Combining the powers of electron diffraction, electron microscopy, PXRD and NMR for structure determination of complex disordered zeolites

Tom Willhammar1,2, Xiaodong Zou1, Junliang Sun1, Wei Wan1, Peter Oleynikov1, Daliang Zhang1

1. Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
2. Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium

email: tom.willhammar@uantwerpen.be

Intergrowth and stacking disorders are common in inorganic materials in general and within zeolites in particular. Severe disorder makes structure determination a great challenge. Recent developments in electron crystallography facilitate the study of disordered materials greatly. In combination with powder x-ray diffraction and NMR these methods have proven to be successful in the structure determination of the new heavily disordered zeolite structure ITQ-39 [1].

Electron crystallography is highly complementary to x-ray diffraction with two big advantages. Firstly single crystal diffraction data can be obtained from crystals smaller than 50 nm by utilizing the Rotation Electron Diffraction (RED) method [2]. Single crystal data makes it much easier to analyze material and obtain information such as the unit cell, symmetry and also general knowledge about the nature of the disorder. A second great benefit of electron crystallography is the possibility to obtain high resolution transmission electron microscopy (HRTEM) images; images which reveal the local arrangement of atoms in the material without averaging and are of huge importance in the study of disordered materials.

The zeolite ITQ-39 exhibits a PXRD pattern with few and broad features, Fig 1, due to disorder and small crystal size, 30x30x500 nm. RED data indicated presence of stacking disorder, as diffusely scattered lines, and twinning. HRTEM images along two perpendicular directions revealed the local atomic arrangement and confirm the stacking disorder and twinning. Crystallographic structure factors were extracted from ordered regions of the images, regions as small as a few unit cells. The structure factors were merged into a 3D potential map from which the atomic structure could be determined. The material turned out to be a new zeolite family built from a random intergrowth of three different polytypes.

The material was synthesized in the presence of F ions which are trapped inside small cages of the structure. 19F NMR can provide a fingerprint for the type of cages present in the structure showed the presence of two different types of cages, the 48 and the 4354 cages. The two cages can be assigned to the different polytypes and confirm their presence.

Keywords: electron crystallography, zeolite, nmr

References
