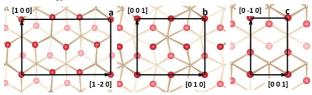
## MS43-P11 Structure characterization of lattice-matched rutile and $TiO_2$ -II phases grown by atomic layer deposition on $\alpha$ -Al $_2O_3(0\ 0\ 1)$

Kristel Möldre<sup>1</sup>, Hugo Mändar<sup>1</sup>, Lauri Aarik<sup>1</sup>, Aivar Tarre<sup>1</sup>, Jaan Aarik<sup>1</sup>

1. Institute of physics, University of Tartu, Ravila 14c, 50411, Tartu, Estonia

## email: kristel.moldre@ut.ee

Atomic layer deposition of TiO $_2$  from TiCl $_4$  and ozone on single crystal  $\alpha$ -Al $_2$ O $_3$ (0 0 1) substrates was investigated. The structure of films was characterized using X-ray reflection (XRR) and X-ray diffraction (XRD) in high resolution (HR), in-plane (IP) and reciprocal space mapping (RSM) modes.


HR-XRD  $\theta$ -2 $\theta$  diffraction patterns of the films deposited on c-sapphire at 400–600°C, showed two reflections together with their Pendellsösung fringes, which implied that (1 0 0)-oriented high-pressure TiO<sub>2</sub>-II or strained rutile was formed. X-ray crystallite sizes in direction of surface normal, determined from boardening analysis of the reflections were comparable to the film thicknesses (XRR) at  $T_G \geq 400$ °C.

IP-XRD analysis revealed that at 400–600°C both rutile and TiO<sub>2</sub>-II were epitaxially grown in the films with epitaxial relationships of [0 1 0]<sub>R</sub>//[1 0 0]<sub>S</sub> and [0 0 1]<sub>R</sub>//[1 2 0]<sub>S</sub> for rutile and sapphire, and [0 0 1]<sub>H</sub>//[1 0 0]<sub>S</sub> and [0 -1 0]<sub>H</sub>//[1 2 0]<sub>S</sub> for TiO<sub>2</sub>-II and sapphire. It is worth noting that the (0 0 1)<sub>H</sub>//(0 1 0)<sub>R</sub> in-plane relationship for rutile and TiO<sub>2</sub>-II in our films differed from the (0 0 1)<sub>H</sub>//{0 1 1}<sub>R</sub> relationship reported earlier for TiO<sub>2</sub>-II and rutile in a natural form of TiO<sub>2</sub> [1].

Lattice parameters were determined by IP-XRD analysis of reflections 0 2 0, 0 0 2 of TiO<sub>2</sub>-II and 0 1 1 of rutile and by RSM of reflection 3 1 1 of TiO<sub>2</sub>-II and reflections 3 1 0 and 3 0 1 of rutile. The parameters of TiO<sub>2</sub>-II were  $a_{II}=0.4531\pm0.0002$  nm,  $b_{II}=0.546\pm0.003$  nm and  $c_{II}=0.482\pm0.006$  nm while those of rutile equaled to  $a_{R}=0.4531\pm0.0002$  nm,  $b_{R}=0.475\pm0.006$  nm and  $c_{R}=0.29\pm0.01$  nm. According to these results the crystallites with TiO<sub>2</sub>-II and highly strained rutile structures were evidently lattice-matched to each other in the films. Comparison of the in-plane atomic arrangements in 2D unit cells of  $\alpha$ -Al<sub>2</sub>O<sub>3</sub>(0 0 1), rutile (1 0 0) and TiO<sub>2</sub>-II (1 0 0) (Fig. 1) demonstrated relatively good lattice match explaining the epitaxial growth observed in our experiments.

From boardening analysis of reflections 1 1 0 and 1 1 1 for  $\mathrm{TiO}_2$ -II and 1 1 0, 1 0 1, 3 0 1 for rutile the in-plane X-ray crystallite sizes were estimated to be 4.0 nm for  $\mathrm{TiO}_2$ -II and 3.6 nm for rutile.

[1] D.W. Meng, X.L. Wu, F. Sun, L.W. Huang, F. Liu, Y.J. Han, J.P. Zheng, X. Meng, R. Mason, High-pressure polymorphic transformation of rutile to  $\alpha$ -PbO<sub>2</sub>-type TiO<sub>2</sub> at  $\{0\ 1\ 1\}_R$  twin boundaries, Micron 39 (2008) 280–286.



**Figure 1.** Structure models of in-plane unit cells and atomic arrangements for (a)  $\alpha$ -Al<sub>2</sub>O<sub>3</sub>(0 0 1), (b) TiO<sub>2</sub>-II(1 0 0) and (c) rutile(1 0 0) atomic planes. Large spheres designate positions of oxygen and small spheres show location of Al or Ti. Labels at arrows show crystallographic directions.

**Keywords:** Titanium Dioxide, Thin Films, Atomic Layer Deposition, Crystal Structure, Epitaxy, TiO2-II, Rutile