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What is an ‘ideally imperfect’ crystal? Is kinematical
theory appropriate?
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Most materials are crystalline because atoms and molecules tend to form

ordered arrangements, and since the interatomic distances are comparable with

the wavelength of X-rays, their interaction creates diffraction patterns. The

intensity in these patterns changes with crystal quality. Perfect crystals, e.g.

semiconductors, fit well to dynamical theory, whereas crystals that reveal the

stereochemistry of complex biological molecules, the structure of organic and

inorganic molecules and powders are required to be fragmented (termed

‘ideally imperfect’) to justify the use of the simpler kinematical theory. New

experimental results of perfect and imperfect crystals are interpreted with a

fundamental description of diffraction, which does not need fragmented crystals

but just ubiquitous defects. The distribution of the intensity is modified and can

influence the interpretation of the patterns.

1. Introduction

The kinematical theory is used widely in X-ray diffraction and

assumes that the amplitude scattered from each plane is

additive, such that the intensity Ihkl / |Fhkl|
2. Experimentally

the intensities are determined from the scattered X-rays in the

vicinity of the peaks. There is a problem with this explanation

as pointed out by Darwin (1914) in that the scattered beam

will be incident at an angle close to the condition for strong

scattering from the underside of the planes above, creating a

re-scattered beam which will interfere with the incident beam

travelling in the same direction. This not only reduces the

intensity of the incident beam but also weakens the scattered

beam. This effect is described with dynamical theory, Ewald

(1916, 1917), which leads to a complex relationship between

intensity and the structure factor, making it unsuitable for

routine structure determination. Dynamical theory results in

very close fits to the structure of perfect crystals, e.g. semi-

conductor wafers, whereas kinematical theory seems to work

for biological and chemical structures.

Darwin (1922) proposed that crystals are in general

imperfect, and could be considered as a conglomeration of

small perfect crystal blocks. These have to be sufficiently small

for the scattered beams to be weak and thin enough to limit

the re-scattering impact on the incident beam. This implies, as

Authier (2001) describes, that the scattered amplitude from

each crystal block has no phase relationship with its neigh-

bours such that the overall intensity is the sum of the intensity

from each block. Therefore the width of the diffraction peak

will be associated with the crystal blocks and not the crystal as

a whole. This description defines the crystal microstructure

rather precisely, regions small enough to avoid dynamical

effects, with orientations that are still small etc.
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Since dynamical effects are unavoidable in the Bragg

description is there an alternative explanation, without putting

unreasonable demands on the crystal microstructure? Or is

the sample description a convenient description to make the

theory fit?

2. Observation of the intensity from nearly perfect and
imperfect crystals

The diffraction profile from a set of planes from a perfect

crystal is predicted to reveal two peaks, one associated with a

mirror reflection and the other associated with the spacing

between the planes (Fewster, 2014). The position of the mirror

reflection varies as the crystal is rotated, whereas the latter is

stationary. This can be observed in Fig. 1 for the (113) crystal

planes of a high-quality Ge (001) orientated wafer. The (113)

crystal plane, inclined at ’ = 25.3� to the surface, avoids any

interference from surface reflections. For this set of crystal

planes and Cu K� wavelength, the incident angle to the crystal

planes will satisfy the Bragg condition when � = 2�B/2 where

2�B � 53.68�. The profiles in Fig. 1 were obtained by setting �
at various angles close to 2�B/2 and the intensity is captured on

a 7� position-sensitive detector centred on 2�B (Fewster, 2015).

For each setting there is a sharp specular peak and a double-

peaked profile at the scattering angle 2�B. The sharp mirror

peak reflects all wavelengths in the same direction and is

purely a function of the incident angle. The two central peaks

correspond to the 2�B angles for the Cu K�1 and Cu K�2

wavelengths, i.e. they appear at the same position for all

incident angles. As the specular peak approaches 2�B for one

of the wavelengths the intensity increases, the peaks merge

and the Bragg condition is satisfied for that combination of �
and d. Away from the traditional Bragg condition (� = 2�B/2)

the intensities of the peaks are low but they are nonetheless

clearly present.

In the case of an imperfect crystal, the diffraction profile is

more complicated (Fig. 2). The mirror reflection is no longer

sharp but broad, the 2�B peak remains in the same position but

it takes on a more complicated form. In this experiment there

was just one wavelength Cu K�1 and for a perfect crystal this

would be a single peak. As the mirror peak approaches the 2�B

peak the intensity increases.

The diffraction profiles in Fig. 1 are not easy to explain with

conventional theory because the perfect sample has a single

peak and a double peak at each � incident beam value

containing two wavelengths. Bragg’s law would result in two

peak positions, one for each wavelength, from which the

intensity is dispersed. The profile from the imperfect sample

also leads to similar difficulties, in that there is always intensity

at 2�B regardless of the orientation and this is not predicted by

Bragg’s law. The description given by Fewster (2014) refers to

the case of a perfect crystal using monochromatic radiation,

but it does also imply that all diffraction cannot be described

by the simple application of Bragg’s law. There are many

publications on dynamical theory covering more than five

decades of study of distorted crystals, which has been thor-

oughly reviewed and discussed by Authier (2001). The cited

publications cover everything from ray tracing and how this

can be extended with the description by Takagi (1962, 1969),

including the breakdown of coherence (Kato, 1976), to the

point where Takagi’s theory becomes invalid at high strain

levels and diffuse scattering becomes prominent (Krivoglaz,

1996). In statistical dynamical theories (Kato, 1976, for

example), it is speculated that the coherence is maintained

over certain distances (e.g. between defects) and is akin to the

mosaic block description. This may well be a good description

of the microstructure; however in an attempt to fully explain

the experimental evidence it is necessary to consider the

diffraction mechanism at a more fundamental level.
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Figure 2
The profiles close to the scattering from the (113) planes from an
imperfect (001) gallium arsenide wafer at several orientations in !, using
the same geometry as Fig. 1, except that a 4� channel-cut crystal was used
to isolate a single wavelength and create a narrow incident beam. The
beam size in the scattering plane is 0.3 mm. The undulations of the crystal
planes are revealed by the shape of the specular profiles at each !. The
strain variation is emphasized by the broad enhancement peaks. When
the specular beam is below the critical angle, it cannot emerge from the
crystal, i.e. ! < 52.07� but the enhancement peak is still present.

Figure 1
The experimental demonstration of the enhancement at the scattering
angle 2�B, for various angles of incidence � to the crystal planes. The
sharp peaks are the specular peaks and the central double peaks are the
enhancement peaks. The measurements were collected in 20 s with the
detector (PIXcel 3D) centred on the 113 scattering angle for the Bragg
condition using an X-ray mirror, with a beam size in the scattering plane
of 1.2 mm.



3. The origin of the intensity

A crystal can be considered as an ordered array of scattering

points, and as the regularity of the array diminishes the crystal

becomes imperfect. A three-dimensional array can be viewed

such that it appears as many sets of planes. The scattering

points can be considered as a unit cell (or repeat entity)

composed of atoms or molecules, provided there is a reason-

able number of unit cells.

An incident wave impinging on a plane of scattering points

P will create spherical waves from each (Fig. 3a). The

maximum amplitude of these waves occurs at a radius s1 when

the incident wave maximum at A has travelled from A1 to P1

and along s1. Similarly the radius s01 of maximum amplitude

occurs when the maximum from A01 has scattered from P01

along s01 etc. These radii of maximum amplitude will merge to

form a plane wavefront at S1 S01, which occurs at the specular

condition for each plane of atoms. Another wavefront will

form at S2 from the plane, p2 p2, and travel in the same

specular direction as S1, but the maxima are not necessarily

coincident with S1. The combined amplitudes will not create

maximum intensity unless the path lengths A1P1S1 and A02P02S2

differ by an integer number of wavelengths, which is the Bragg

condition. However, the phase combination of the amplitudes

scattered in any direction from a single plane will form

wavefronts in all directions even if the individual spherical

radii are not in perfect phase alignment, the amplitudes are

just weaker.

The scattering direction for these weaker amplitudes to be

in phase, and therefore give an intensity peak, is determined

with reference to Fig. 3(a). The path length A2P2B2 will differ

by an integer number of wavelengths from A1P1B1 at a given

incident angle �, only when the scattering angle 2� and angle

� (� can take on any value) satisfy the equation

aþ b ¼
d

cos �
sin 2� ��� �ð Þ þ sin �þ �ð Þ½ � ¼ n�: ð1Þ

If the points P1 and P2 scatter in phase their amplitude

contributions will add. The total amplitude is the sum of all the

contributions that scatter in a close phase relationship at a

specific scattering angle for a given incident angle. From

equation (1) we can decide on an acceptable path difference,

� = |a + b� n�| and sum the number of � values, for specific �
and 2� values, that have a path difference < �. These totals are
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Figure 3
(a) A represents the incident wavefront, S the specular wavefront and B
the wavefront at the scattering angle 2�, which is drawn for the direction
when the scattering from each plane is in phase. The Bragg equation
assumes there is only one peak at the detector and this occurs when both
B and S are coincident, i.e. the scattering is a mirror reflection, whereas
the new explanation allows B and S to be separated. (b) This is a map of
the number of scattering points with a path difference < 10�4 nm as a
function of � and 2� obtained with steps in � of 10�5 rad, plotted on a
linear scale from 0 to 2000 scatters (see supporting information). The
maximum is at 300 000 for the Bragg condition when all the contributions
are in phase.

Figure 4
(a) The specular wave from a single flat plane of scattering points. (b) The
specular wave from scattering points that do not lie on a flat plane. A, T
and S represent the incident, transmitted and specularly reflected
wavefronts, respectively.



plotted in Fig. 3(b) for n = 1 and show that there is an intensity

peak at 2�B for all values of �. To maintain phase coherence in

large crystals with many planes, the acceptable path difference

must be smaller which narrows the width of the peak at 2�B.

4. The diffraction from imperfect crystals

The description in Fig. 3 refers to a perfect crystal when all the

scattering points are in the same plane and the maxima of the

spherical waves all coincide and form a planar specular

wavefront S (Fig. 4a). The crystal planes of an imperfect

crystal are not perfectly flat and parallel, due to small defects

and strains, and the wavefront is formed from scattering points

as shown in Fig. 4(b). The maxima of these waves cannot be

brought into coincidence, so the contributions cannot have a

perfect phase alignment and the specular peak from such a

plane will be weaker and broadened. The angular broadening

can be visualized by the dashed wavefronts in Fig. 4(b).

A strained crystal has regions of different d values giving a

range of 2�B values. This can be seen for the imperfect gallium

arsenide crystal in Fig. 2. Despite the incident beam being

monochromatic and of low divergence, the 2�B peak is �3�

broader than expected and not a simple shape. The specular

peaks are considerably broader and weaker than the 2�B

peaks (Figs. 5b and 5d), whereas for the more perfect sample

(Figs. 5a and 5c), the specular peak is generally more intense

than the 2�B peak, and the peak is narrower.

The suppression of the dynamical effects can be understood

by comparing the diffraction from a perfect (Figs. 4a, 5c) and

an imperfect (Figs. 4b, 5d) crystal. Because the specular peak

is narrow in the perfect crystal, the crystal plane is close to

being flat over a large area, and therefore all the contributions

can form a nearly planar wavefront and can simultaneously

meet the Bragg condition. This will require dynamical theory

to model this scattering. When the planes are bent as in an

imperfect crystal only a small range of the broad specular peak

can overlap with the 2�B peak to satisfy the Bragg condition at

any single setting. For example the fourth specular peak (Figs.

2 and 5d), which is closest to the 2�B peak, is greater than 3�

the width of the 2�B peak. Therefore the Bragg condition can

only be satisfied by a fraction (one third at most) of the crystal

at any one setting and hence the dynamical effects are

suppressed. The spread in 2�B from strain reduces the chance

of satisfying the Bragg condition further, i.e. the relevant d

spacing for the region being probed corresponds to approxi-

mately one third of the peak width (the peak �3� broader

than expected). In this example therefore the dynamical

effects are suppressed by about an order of magnitude.

5. Discussion

All crystals are distorted to an extent because they contain a

mixture of dislocations, precipitates and point defects.

Curvature of the crystal planes is a natural response to this

along with some variation in plane spacing. This alternative

explanation suggests that a distorted crystal will place inten-

sity at the Bragg angle without satisfying the Bragg condition,

and reduce the impact of dynamical effects. With this new

approach the small crystal block model,

which is inevitable with Bragg’s inter-

pretation of diffraction, is not necessary

here because the interference of

imperfectly ordered scatterers accounts

for the variation of intensity already.

So it appears that the kinematical

theory approximation is appropriate for

imperfect crystals. But Fhkl is the total

amplitude associated with the crystal

plane hkl, and will clearly not be loca-

lized to the vicinity of the Bragg peak.

Consider some possibilities: if the

crystal planes are perfectly flat then the

intensity scattered by those planes can

simultaneously scatter at the specular

position with a contribution at the 2�B

position (Fewster, 2014). This effect is

shown in Fig. 5(a) for a relatively

perfect crystal, whereas the specular

peak is weak compared with the 2�B

peak for the imperfect crystal experi-

ment (Fig. 5b).

Hence a typical intensity profile

measurement obtained with a low-

divergence incident beam (��) and

small acceptance in the scattered beam

(�2�) will capture a good proportion of

research papers

Acta Cryst. (2016). A72, 50–54 Paul F. Fewster � What is an ‘ideally imperfect’ crystal? 53

Figure 5
The integrated intensities (a) and FWHM (c) values for a nearly perfect crystal (Fig. 1) and (b) and
(d) for the imperfect crystal (Fig. 2) for those positions where the specular and 2�B peaks are
distinct. The absolute values of the intensities cannot be simply compared between these two
crystals, because of the different primary optics, sample-to-detector distance and grazing exit angles
of the scattered beam.



the intensity by scanning along the specular direction with

both axes, if the crystal is perfect. If the same experiment is

performed on an imperfect crystal then most of the intensity is

at 2�B (Figs. 2 and 5b). This is an inconvenience for imperfect

single-crystal analysis because the intensity needs to be inte-

grated whilst rotating in � to capture the intensity at 2� = 2�
and 2�B to give a reasonable approximation to |Fhkl|

2. This

dispersion of the intensity but enhancement at 2�B is however

very convenient in powder diffraction because the whole

pattern can be captured from randomly orientated crystals to

give a good estimate of |Fhkl|
2, provided a correction for the

intensity dispersion is taken into account (Fewster, 2014).

For the most perfect crystals the 2�B peak is weak compared

with the specular peak and the experimental method

described above should lead to good agreement with dyna-

mical theory. As the crystal quality declines as seen in Figs. 1

and 2, the 2�B peak begins to become more dominant, which is

not captured by scanning along the specular direction if a

small divergence, ��, and small acceptance in the scattered

beam, �2�, are used. This will lead to poor intensity estimates

unless the proportion of the specular to 2�B peak intensities

remains constant. In Figs. 5(a) and 5(b) this proportion is not

constant, the nearly perfect crystal gives a standard deviation

over the mean of 0.5 and the imperfect crystal gives 0.7, i.e. in

this example the reliability of the intensity estimates declines

as the perfection decreases, unless more of the dispersed

intensity is measured or estimated.

This description accounts for many of the features observed

in experiments, without reverting to more complex or unre-

presentative structural models. It can be extended to very

imperfect crystals provided the scattering points can be

represented by the structure factor. For non-periodic struc-

tures (amorphous materials) the scattering needs to be

considered at the atomic level (Debye, 1915), and for crystals

with only a few unit cells the crystal shape starts to become

important. However for most crystals the structure factor is a

very convenient description of the scattering from the repeat

unit. At present the calculation of the scattering at the atomic

level is prohibitive in time with typical size samples. This

approach though gives a route to understanding the scattering

by X-rays from the most perfect crystals to amorphous

materials.
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