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This paper presents an extension of phase retrieval algorithms for near-field

X-ray (propagation) imaging to three dimensions, enhancing the quality of the

reconstruction by exploiting previously unused three-dimensional consistency

constraints. The approach is based on a novel three-dimensional propagator and

is derived for the case of optically weak objects. It can be easily implemented in

current phase retrieval architectures, is computationally efficient and reduces

the need for restrictive prior assumptions, resulting in superior reconstruction

quality.

1. Introduction

Over the last two decades the capabilities of X-ray tomo-

graphy have been significantly improved by phase contrast

methods. As opposed to conventional X-ray tomography,

which is sensitive only to the amplitude (transmission) of the

X-ray wave traversing an object, phase contrast techniques

also take the phase shifting properties of the objects into

account. This enables the visualization of weakly or non-

absorbing soft tissues in biomedical imaging, or nanoscale

structures in material science. Phase contrast is easily achieved

without additional optical elements by free space propagation.

The associated self interference of the object’s exit wave over

the controllable distance � between object and detector

(Wilkins et al., 1996; Cloetens et al., 1999; Paganin & Nugent,

1998) encodes phase information into measurable intensities.

The standard approach in evaluating phase contrast tomo-

graphy data is a two-step reconstruction procedure. First, the

phase retrieval is carried out, i.e. the complex valued exit wave

is retrieved from the intensity measurements, separately for

each projection angle. Secondly, all projections are combined

to a three-dimensional volume using inverse Radon transform

methods, in most cases a filtered back-projection (FBP). This

is in sharp contrast to far-field coherent diffractive imaging,

where phase retrieval is performed not only on projections,

but commonly directly in three dimensions (Miao et al., 2001,

2005; Chapman et al., 2006).

The phase retrieval step is considered to be the main

challenge. Considerable efforts have concentrated on phase

contrast algorithms beyond the simple but flawed holographic

reconstruction by numerical back-propagation (Paganin,

2006). Deterministic but approximative solutions have been

formulated based on the transport-of-intensity equation (TIE)

(Paganin et al., 2002; Groso et al., 2006; Bronnikov, 1999), or

on the analytic form of the free space contrast transfer func-

tions (CTF) (Cloetens et al., 1999; Turner et al., 2004; Gureyev

et al., 2004; Langer et al., 2012; Hofmann et al., 2011). The

general strategy to overcome reconstruction artifacts such as
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the well known twin-image problem is to either use data sets

with more than a single object-to-detector distance (Cloetens

et al., 1999; Allen & Oxley, 2001; Latychevskaia & Fink, 2007;

Hong et al., 2012; Krenkel et al., 2013), restrictive prior

information such as known relationships between phase shift

and absorption (Paganin, 2006; Wu et al., 2005) or known

compact support of the object (Gerchberg & Saxton, 1972;

Giewekemeyer et al., 2011; Bartels et al., 2012). The constraints

due to prior information are usually implemented by iterative

projection algorithms.

To overcome these limitations and provide a solution in

particular for tomography scans at a single detection

distance �, which is the most relevant case in practice, we and

others have recently proposed a coupling of the two steps,

phase retrieval and tomographic reconstruction (Kostenko et

al., 2013; Ruhlandt et al., 2014). We could show that a

combined phase retrieval and algebraic tomographic recon-

struction scheme termed ‘iterative reprojection phase

retrieval’ (IRP) enhances the reconstruction quality and

allows one to retrieve the phase of objects of mixed compo-

sition without the need for additional a priori knowledge

(Ruhlandt et al., 2014). In particular, IRP was found to

stabilize the reconstruction of low spatial frequencies which

have previously hampered single-distance phase retrieval.

This differs from combinations of the phase retrieval and FBP

published before, which were implemented not to achieve

coupling, but enhanced speed (Gureyev et al., 2004; Bron-

nikov, 2002). We attribute the enhancements in quality to the

tomographic consistency condition (Helgason, 1965; Ludwig,

1966), which states that the different projections of an object

are not independent from each other. This has been found

very useful before in conventional absorption tomography, for

example in the reconstruction of incomplete data (missing

wedge, Kudo & Saito, 1991). Unfortunately, the gain in

performance by IRP came at the cost of substantial compu-

tational effort, as well known also from previous algebraic

tomographic reconstruction (ART) for the case of conven-

tional absorption CT (computed tomography) (Gordon et al.,

1970; Kak & Slaney, 1988). Hence, the combined phase

retrieval and ART approach could so far be applied only to

small data volumes.

In this work, we show that phase retrieval for optically weak

objects can be enhanced by an inversion of the two steps, i.e.

by first performing the inverse Radon transform, followed by a

computationally efficient three-dimensional phase retrieval.

The first step can be implemented for example by a fast FBP,

the second by three-dimensional fast Fourier transformations

(FFT). This approach has been used before in the context of

deterministic one-step phase retrieval (Frank & Penczec, 1995;

Cloetens et al., 1997). In this work we show that in combina-

tion with iterative phase retrieval, this three-dimensional

propagation scheme exhibits superior reconstruction quality.

Furthermore, propagation of entire three-dimensional objects

sheds new light on the nature of the three-dimensional phase

contrast tomography problem. In this article, first the theo-

retical concept is introduced, followed by a numerical imple-

mentation demonstrating the capabilities of the approach.

2. Theory

In X-ray imaging, the interaction of the radiation with an

object is usually described by a three-dimensional index of

refraction,

nðx; y; zÞ ¼ 1� �ðx; y; zÞ þ i�ðx; y; zÞ; ð1Þ

where 1� � causes the phase shift and the imaginary part i�
the absorption in the object for a given wavelength �. Notice

that we consider monochromatic radiation. The illumination

wave is treated as a plane wave � ¼ �0 expðik0z) propagating

along the optical axis z with the wavenumber k0 ¼ 2�=�. For a

homogeneous slab of thickness t the phase shift induced by the

object with respect to the propagation in free space is simply

given by �k0�t, and the wave amplitude by expð�k0�tÞ. In

most practical applications of hard X-ray coherent imaging,

the object is weak enough that the projection approximation

holds (Thibault, 2007) and the propagation of the wave within

the sample can be neglected. The distribution of the index

nðx; y; zÞ then leads to a spatially modulated exit wave

�eðx; y; z ¼ 0Þ in the plane z ¼ 0 directly behind the

object, which is determined only by the projection

Rðn� 1Þ :¼
R
ðn� 1Þ dz of the index of refraction along the

optical axis:

�eðx; y; z ¼ 0Þ ¼ �0ðx; yÞ exp½ik0Rðn� 1Þ�: ð2Þ

Further, for optically weak objects jk0Rðn� 1Þj � 1 the

exponential function can be linearized to

�eðx; y; z ¼ 0Þ ’ �0 1þ ik0Rðn� 1Þ
� �

: ð3Þ

The propagation Dð�Þ of the exit wave �e in free space

can be expressed by a multiplication in Fourier space.

For a given propagation distance � the two-dimensional

(2d) Fourier transform F 2d�e is multiplied point-wise

with the radially symmetric propagator Pðkx; ky;�Þ :¼
exp½i�ðk2

0 � k2
x � k2

yÞ
1=2
� (Fourier space coordinates kx; ky)

followed by a Fourier back-transform F�1
2d (Paganin, 2006):

��ðx; y; z ¼ �Þ ¼ Dð�Þ�eðx; y; z ¼ 0Þ

¼ F
�1
2d Pð�ÞF 2d�eðx; y; z ¼ 0Þ
� �

’ �0 expðik0�Þ þ�0ik0F
�1
2d ½Pð�Þ

� F 2dRðn� 1Þ�: ð4Þ

In the last step, the weak object approximation has been used.

According to the Fourier slice theorem, the two-dimensional

Fourier transform of a projection is identical to the central

slice of the three-dimensional (3d) Fourier transform of the

index of refraction n� 1, normal to the direction of the

projection:

F 2dRðn� 1Þ ¼
R R1
�1

R
ðn� 1Þ dz exp ið�kxx� kyyÞ

� �
dx dy

¼ F 3dðn� 1Þ
� �

kz¼0
: ð5Þ

Hence, every operation carried out in the two-dimensional

Fourier space of the projection, notably the multiplication

with the propagator Pðkx; kyÞ, can equally be applied to the

corresponding central slice in the three-dimensional (3d)
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Fourier space. In the linearized approximation of optically

weak objects this allows one to invert the order of the

projection and propagation:

D2dRðn� 1Þ ¼ F�1
2d P2dF 2d R½nðx; y; zÞ � 1�

� �� �
¼

1

4�2

Z Z1
�1

(
exp½i�ðk2

� k2
x � k2

yÞ
1=2
�

Z Z1
�1

Z
ðn� 1Þ dz

� exp½�iðkxxþ kyyÞ� dx dy

)

� exp½iðkxxþ kyyÞ� dkx dky

¼
1

4�2

Z Z1
�1

Z (
exp½i�ðk2

� k2
x � k2

y � k2
zÞ

1=2
�

Z Z1
�1

Z
ðn� 1Þ

� exp½�iðkxxþ kyyþ kzzÞ� dx dy dz

)

� exp½iðkxxþ kyyÞ��DiracðkzÞ dkx dky dkz

¼
1

6�3

Z1
�1

Z Z1
�1

Z (
exp½i�ðk2

� k2
x � k2

y � k2
zÞ

1=2
�

Z Z1
�1

Z
ðn� 1Þ

� exp½�iðkxxþ kyyþ kzzÞ� dx dy dz

)

� exp½iðkxxþ kyyþ kzzÞ� dkx dky dkz dz

¼ RF
�1
3d P3dF 3d½nðx; y; zÞ � 1�
� �

¼ RD3d½nðx; y; zÞ � 1�: ð6Þ

To avoid misunderstandings, we note that �DiracðkzÞ in the

expression above denotes the Dirac delta distribution and not

the dispersive decrement of the index of refraction. Propa-

gating the three-dimensional object (volume) first and

projecting subsequently leads to the same result as conven-

tional two-dimensional propagation of a projection. More-

over, this holds for every projection angle. For tomography,

the object is rotated around the y axis, as shown in Fig. 1(a),

and projected under a large number of angles �i. In Fourier

space, these projections correspond to planes with normal

vectors in the xz plane sharing one common axis ky corre-

sponding to the axis of rotation, as also illustrated in Fig. 1(a).

Propagating all the projections simultaneously about a

distance � is equivalent to multiplying F 3dðn� 1Þ point-wise

with the phase function

P3dðkx; ky; kz;�Þ ¼ exp i�ðk2
0 � k2

x � k2
y � k2

zÞ
1=2

� �
; ð7Þ

which appeared in equation (6) as the three-dimensional

generalization of the conventional two-dimensional propaga-

tion kernel P2dð�Þ. Again, kx; ky and kz are the components

of the sample’s Fourier space and not the components of the

wavevector k0 ¼ 2�=�. Hence, the three-dimensional propa-

gatorD3d ¼ F
�1
3d ½P3dF 3d� describes a method to propagate the

entire three-dimensional object in the near field and is the

most important concept and tool in this work. We denote the

output as ‘propagated object’. While we only use the above

formulation of the propagator in this work, the method is not

restricted to this particular choice. Alternative formulations

including the paraxial approximation of equation (7)

(Paganin, 2006) or of the Rayleigh–Sommerfeld/Fresnel–

Kirchhoff diffraction integrals (Voelz & Roggemann, 2009)

could also be used. The three-dimensional nature of the

‘propagated object’, and the fact that the propagation between

object and detection planes is now carried out for the entire

three-dimensional volume, has some important consequences

and is conceptually different from the conventional propaga-

tion of two-dimensional wavefronts. One interesting aspect of

the three-dimensional propagator approach is given by the

fact that phase retrieval can be performed on central planes

through the object with arbitrary orientation, including in

particular planes orthogonal to the tomographic rotation axis.

In view of computational speed, we found that the single

three-dimensional propagation outperformed the conven-

tional N two-dimensional propagations, in particular for data

sets with a high number of projections N.

Next, we show how the three-dimensional propagator can

be used advantageously in iterative phase retrieval. To this

end, we do not restrict ourselves to small propagation

distances, i.e. validity of the TIE regime (Paganin, 2006), but

consider the problem for general Fresnel numbers including

the holographic regime. We remain, however, within the weak

object approximation, as stated above. Note that, strictly

speaking, the linearization with respect to the object needed

here is valid beyond the strict weak phase object [see for

example the slowly varying phase condition introduced in

Guigay (1977) and Gureyev & Nesterets (2015)]. Since in an

experiment only the intensity I / j��j
2
¼ ����� of the

propagated exit field can be measured, we do not have direct

access to the propagated three-dimensional object. However,

we can apply an inverse Radon transform R�1 on the inten-

sities Ii , combining all i ¼ 1 . . . N projections to a three-

dimensional ‘intensity field’ I3d :¼ R�1
ðIi=j�0j

2
Þ. Using

equation (6), the usual decomposition of the measured

intensities into the different components of the hologram is

given as

I3d �R
�1
ð1Þ ¼

ik0 expð�ik0�ÞD3dðn� 1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
object

� expðik0�ÞD
�
3dðn� 1Þ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

twin-object

2
4

3
5

þ k2
0R
�1
jRðn� 1Þj2|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�1

; ð8Þ

formulating the well known twin-image problem of holo-

graphy in three dimensions. The expression shows that the

three-dimensional ‘intensity field’ I3d is consistent, since it can

be written as the sum of the propagated object and the

complex conjugated ‘twin object’ ðn� 1Þ� propagated about

the distance ��, since Dð�Þ� ¼ Dð��Þ. Tomographic

consistency, described in detail by Helgason and Ludwig

(Helgason, 1965; Ludwig, 1966; Kudo & Saito, 1991), states

that projections from the same object are not independent

from each other. The Fourier slice theorem already shows that

all projections share a common intersection line in Fourier

space. For objects of finite size, the central slices in Fourier

space can be seen as broadened by a convolution with the
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object’s support. This introduces a dependence between all

slices. Explicitly, one cannot change the value at any given

point in Fourier space without violating consistency for an

object of finite size. From equation (8) we can infer that the

twin-object/phase problem does not introduce such tomo-

graphical inconsistencies. In return, this property cannot be

exploited to improve phase retrieval directly. In particular, we

expect only limited improvements for three-dimensional

phase retrieval by deterministic one-step algorithms like a

direct CTF inversion, where the three-dimensional inversion

has been used previously (Frank & Penczec, 1995; Cloetens et

al., 1997) if carried out in three dimensions rather than two

dimensions, even if the geometry of the three-dimensional

problem is different from two-dimensional imaging. With the

definition expði�Þ :¼ expð�ik0�ÞP3d and ðn� 1Þ ¼ ��þ i�,

equation (8) is rewritten in Fourier space as

F 3d

I3d �R
�1
ð1Þ

k0

	 

’ i expði�Þ � expð�i�Þ½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�2 sinð�Þ

F 3dð��Þ

� expði�Þ þ expð�i�Þ½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
2 cosð�Þ

F 3dð�Þ; ð9Þ

illustrating the structure of the CTF in three dimensions. The

CTF3d with zero values on spherical shells does not contain all

information about the object. Therefore, one has to resort to

further constraints in phase retrieval, i.e. a priori information,

such as positivity, range restrictions of the object functions, or

known support of the object. However, we have shown

previously that the performance of iterative phase retrieval

with constraints such as positivity can be dramatically

improved if tomographic consistency is enforced (Ruhlandt et

al., 2014). If the phase retrieval is carried out in three

dimensions according to the concept presented, consistency is

guaranteed automatically.

3. Simulation and numerical results

To validate and to illustrate the concept introduced above, we

show an exemplary simulation. A sample was designed

consisting of 30 spheres with a diameter between 20 and 50 px

(px stands for pixel) distributed randomly on a 2563 voxel grid.

For each sphere, a combination of 0:001 � k0� � 0:01 and

0 � k0� � 0:0007 was selected randomly, resulting in a

maximum phase shift of 1.5 rad and a maximum absorption of

6% in the projections.1 The object was projected to 402

equidistant angles in the range 0	 � � � 180	 to satisfy the

angular sampling criterion. To simulate the intensity data Imeas

in the detection plane, all projections were propagated about a

distance � ¼ 2000 px with a wavelength of � ¼ 0:01 px,

resulting in a Fresnel number of F1 ¼ 0:05 for one pixel. This

choice corresponds for example to a relevant experimental

setting in X-ray phase contrast tomography with photon

energy of 12.4 keV, an effective pixel size of 10 nm and an

effective sample-to-detector distance of 20 mm. The phase

retrieval algorithm cycles between the object plane and

detection plane, always propagating the wavefield �. In the

detection plane, the modulus constraint

~��0 ¼ �meas

~��

j ~��j
ð10Þ
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Figure 1
(a) Schematic of holographic phase contrast imaging. A plane wave illuminates the object, leading to an exit wave in the xy plane as given by the
projected optical indices, followed by free space propagation resulting in holographic phase contrast formation as recorded in the detection plane at
distance �. The projectionR and propagation D process can be described theoretically in Fourier space by multiplying the central slices of the object’s
Fourier transform with a radially symmetric phase factor. (b) For weakly interacting objects, the projection operationR and the propagation operationD
can be permuted, allowing for the propagation of the three-dimensional index of refraction.

1 This value clearly violates the assumption of a weakly interacting object, but
illustrates that the advantage of the three dimensions persists even to larger
phase shifts.



is applied, setting the modulus of the wavefield ~��0 to the

measured values �meas ¼ ðImeasÞ
1=2 while keeping the phase

information. In the object plane we demand positivity for both

the � and � parts of the index of refraction which follows

directly from its definition and the projection approximation:

�0 ¼ 1� jReð�0gÞ � 1j � ijImð�0gÞj: ð11Þ

Additionally, we enforced � � 0:1� �, which is justified for a

large class of hard X-ray experiments and samples, including

in particular biological tissues. This constraint is implemented

in the following way: we first set �0 ¼ �
in pixels where �> � and only after-

wards set �0 ¼ 0:1� �0 where � >
0:1� �. 1000 iterations of this ‘soft

coupling’ scheme were carried out for

(i) the conventional method with the

phase information of each detector

image retrieved individually followed

by a filtered back-projection (‘two-

dimensional reconstruction’) and (ii)

for the three-dimensional volume

starting with a filtered back-projection

of the �meas. Typical results are

depicted in Fig. 2, showing clearly the

better quality of the three-dimensional

approach. In the supporting informa-

tion for this paper, additional simula-

tion results are presented for noisy

intensity data (Poissonian noise corre-

sponding to 10 000 ph px�1; ph stands

for photon) as well as results without

the ‘soft coupling’ and thus without any

assumption on the object. While the

overall quality of these reconstructions

is not as good as in Fig. 2, both cases still

show a major improvement of the

three-dimensional approach compared

to the two-dimensional reconstruction

and illustrate the robustness of the

method. The entire three-dimensional

phase retrieval process was carried out

within about 2 min using MATLAB and

an NVIDIA GTX Titan GPU. Example

code in MATLAB/Octave for the

simulation and the explained three-

dimensional reconstruction is available

as supporting information.

Based on the simulations, we can

expect that the approach also performs

well on noisy experimental data. To this

end, we have tested the algorithm on

the data presented previously in Bartels

et al. (2012) and Ruhlandt et al. (2014),

corresponding to holographic projec-

tion images of freeze-dried Deino-

coccus radiodurans bacteria, dispersed

on ultra-thin Si3N4 membranes and

recorded using 13.8 keV radiation exiting from a waveguide

[see Bartels et al. (2012) for experimental details]. The

tomographic scan (single defocus distance data set) comprised

83 projection angles distributed over 162	. The reconstructed

phase of the bacteria as resulting from the three-dimensional

propagator approach in combination with ART is displayed

for a representative slice through the object (Fig. 3). For

comparison, reconstructions are shown as obtained by the

previously presented algorithms, the modified HIO (mHIO)

(Giewekemeyer et al., 2011; Bartels et al., 2012) and the IRP
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Figure 2
Comparison of the phase shifts reconstructed using the conventional two-dimensional propagation
and the three-dimensional propagation. The upper row shows a typical projection of the phantom/
reconstructed volume, the lower row shows an x–z slice, normal to the axis of rotation of the volume.
In the left column the original phantom is depicted, the central column contains the results of the
three-dimensional propagation method presented here and the right column shows the conventional
results. The scale bar is the same for all images; the colour bars apply to the corresponding rows.

Figure 3
Comparison of different reconstructions from the same experimental data. All images show the
same slice through the reconstructed three-dimensional volumes of a Deinococcus radiodurans
bacteria. (a) illustrates the ‘conventional’ mHIO reconstruction reported before (Bartels et al., 2012;
Ruhlandt et al., 2014) where additional support constraints have been used. (b) The IRP result of the
same data shows a much more homogeneous signal distribution without the use of support
information. The method described here leads to the result depicted in (c) showing a comparable
reconstruction quality as IRP but calculated in a fraction of the time.



(Ruhlandt et al., 2014). A major difference between mHIO on

the one side, and IRP and the scheme reported here (three-

dimensional propagation) on the other is that mHIO needs

additional support constraints for phase retrieval, while the

latter do not. Note that, despite this additional constraint,

mHIO leads to artifacts such as the increase of density towards

the top and bottom corners, while the reconstruction of IRP

and the method presented here yield a much more plausible

density distribution. This advantage of IRP over mHIO has

been stressed before (Ruhlandt et al., 2014), but came at the

expense of significant numerical complexity, while the three-

dimensional propagation reaches a quality comparable to IRP

in a fraction of the computation time.

4. Summary and conclusions

While three-dimensional reconstruction in far-field diffraction

has long been known to aid phase retrieval (Marchesini et al.,

2003), the generalization to the near-field case was less

obvious since the measurements (near-field patterns) cannot

in general be considered to be sub-manifolds of a three-

dimensional reciprocal space of the sample. Therefore, an

algebraic tomography scheme was previously proposed for the

purpose of three-dimensional reconstruction of arbitrary

objects (Kostenko et al., 2013; Ruhlandt et al., 2014), however

at the cost of numerous iterations of performing Radon and

inverse Radon transforms.

In this work, we have introduced a new approach to near-

field tomographic phase retrieval in the limit of an optically

weak object. The usual sequence of first retrieving the phase

information of all projections individually followed by an

inverse Radon transform is inverted. A three-dimensional

volume is computed from the measurements, followed by

iterative propagations and the application of constraints in

three dimensions. Since the inverse Radon transform is

performed only once, a tremendous enhancement in recon-

struction speed is obtained with respect to previous combined

schemes of iterative phase retrieval and tomographic recon-

structions. At the same time, the three-dimensional propaga-

tion method preserves the essential advantages of

tomographic consistency, which is intrinsically enforced by the

three-dimensional scheme and was found to stabilize phase

retrieval with otherwise under-determined data.

Even though the three-dimensional propagation does not

lead to major improvements in the quality of direct CTF phase

retrieval, it can be useful to investigate the influence of

regularization parameters directly in three dimensions.

Another immediate advantage of the three-dimensional

scheme not yet exploited here is directly obvious: in three

dimensions, the formulation of entirely new and more

powerful constraints is possible, since they can be applied

directly on the object rather than its projections. This applies

for example to a much more accurate and constraining support

determination, to positivity as well as to sparsity or to regu-

larization procedures. In general, constraints can not only be

formulated in physically correct and direct terms in three

dimensions, but can possibly also be applied to a higher

fraction of voxels. Finally, the measurement scheme could

easily be generalized to several detection planes, and –

somewhat less straightforward – also to more complex illu-

mination wavefields than plane waves.

The theory presented here is based on the assumption of an

optically weak object. However, better phase retrieval results

were obtained in three dimensions even if the maximum phase

shift in some projections was as high as ’ 1.5 rad, as shown in

the example of Fig. 2.

In future work, extensions to optically thick samples could

be investigated. The corresponding exit fields of a sample may

be expected to fulfil generalized consistency criteria which

might be exploitable, and problems of phase wrapping may

also be treated much better if the object is represented in

three dimensions throughout the phase retrieval process.

More straightforward extensions of the present work will

extend the numerical comparison between two-dimensional

and three-dimensional phase retrieval and establish how the

reconstruction quality gain depends on all experimental

parameters, including number of projections, Fresnel number,

added noise or even systematically perturbed data. To this

end, the MATLAB example code (available as supporting

information) may be helpful.
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Kalbfleisch, S., Olendrowitz, C. C., Sprung, M. & Salditt, T. (2012).
Opt. Nanoscopy, 1, 10.

Bronnikov, A. V. (1999). Opt. Commun. 171, 239–244.
Bronnikov, A. V. (2002). J. Opt. Soc. Am. A, 19, 472–480.
Chapman, H. N., Barty, A., Marchesini, S., Noy, A., Hau-Riege, S. P.,

Cui, C., Howells, M. R., Rosen, R., He, H., Spence, J. C. H.,
Weierstall, U., Beetz, T., Jacobsen, C. & Shapiro, D. (2006). J. Opt.
Soc. Am. A, 23, 1179–1200.

Cloetens, P., Ludwig, W., Baruchel, J., Van Dyck, D., Van Landuyt, J.,
Guigay, J. P. & Schlenker, M. (1999). Appl. Phys. Lett. 75, 2912–
2914.

Cloetens, P., Pateyron-Salom, M., Buffire, J. Y., Peix, G., Baruchel, J.,
Peyrin, F. & Schlenker, M. (1997). J. Appl. Phys. 81, 5878–5886.

Frank, J. & Penczec, P. (1995). Optik, 98, 125–129.
Gerchberg, R. W. & Saxton, W. O. (1972). Optik (Jena), 35, 237–246.
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