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In experimental research referencing two or more measurements to one another

is a powerful tool to reduce the effect of systematic errors between different sets

of measurements. The interesting quantity is usually derived from two

measurements on the same sample under different conditions. While an

elaborate experimental design is essential for improving the estimate, the data

analysis should also maximally exploit the covariance between the measure-

ments. In X-ray crystallography the difference between structure-factor

amplitudes carries important information to solve experimental phasing

problems or to determine time-dependent structural changes in pump–probe

experiments. Here a multivariate Bayesian method was used to analyse intensity

measurement pairs to determine their underlying structure-factor amplitudes

and their differences. The posterior distribution of the model parameter was

approximated with a Markov chain Monte Carlo algorithm. The described

merging method is shown to be especially advantageous when systematic and

random errors result in recording negative intensity measurements.

1. Introduction

There appears to be a strong dichotomy in the physical world

between the observables and underlying wavefunctions

(Dyson, 2007), and Bayesian models naturally lend an

appropriate framework to discover the hidden parameters of

the two-layered physical world. In X-ray crystallography the

intensities of equivalent Bragg reflections are observed

multiple times from which the directly unobservable structure-

factor amplitudes can be estimated. Several X-ray crystal-

lographic techniques exploit the fact that structure factors are

dynamic and another (sub)structure can manifest itself as a

difference in intensity observations. If the two sets of intensity

observations are well separated in time or performed on

different crystals there is a substantial risk that the systematic

errors distort the difference amplitude estimates. To reduce

the systematic errors between the observation sets, measure-

ments can be taken from the same crystal and the intensities

can be measured either simultaneously (González, 2003;

Marinelli et al., 2015) or in rapidly alternating cycles (Lund-

holm et al., 2015; Westenhoff et al., 2010).

For example, one can improve the measurement of anom-

alous differences through orienting the crystals such that the

diffraction images contain a large number of symmetry-

related Friedel pairs or through frequently re-orienting the

crystals (inverse-beam geometry data collection strategy)

(González, 2003).

In time-resolved pump–probe experiments, measurements

without pump pulses or pumps with negative time delays are

also frequently interspersed for referencing purposes (Schotte

et al., 2003; Srajer et al., 1996). Difference intensities, unlike
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absolute intensity observations, are not immediately useful

despite their frequently lower variance since the difference

amplitudes cannot be determined without estimating the

structure-factor amplitudes F1 and F2 [equation (1)]:

�F ¼ ðI1 � I2Þ=ðF1 þ F2Þ: ð1Þ

Since intensity observations I1 and I2 ultimately depend on

structure-factor amplitudes F1 and F2 they can be incorpo-

rated in a single Bayesian model. Bayesian models are already

applied to several different problems within crystallography.

One of the first and probably most well known applications of

Bayesian statistics was the treatment of negative intensities of

Bragg reflections by French & Wilson (1978). The problem

they addressed is that negative intensities may arise for weak

reflections after subtracting the background even if a ‘true

intensity’ can never be less than zero. Bayesian statistics are

applied to this problem firstly to incorporate the positivity of

the intensity into the prior distribution, and secondly to

improve the estimates by assuming that the Wilson intensity

distribution is usually (always) applicable (Wilson, 1949).

French & Wilson’s method is already implemented in the

program cTRUNCATE of the CCP4 program suite (Winn et

al., 2011) and XDSCONV (Kabsch, 2010). Phasing methods

also perform better by taking into account correlated errors in

phasing experiments (Terwilliger, 1994; Terwilliger &

Berendzen, 1997; Chiadmi et al., 1993) and the Bayesian

method was also introduced to (difference) refinement

procedures (Terwilliger & Berendzen, 1996). Ursby et al.

improved the estimates of difference amplitudes from poor

data with a Bayesian methodology (Ursby & Bourgeois, 1997).

Common to these approaches is that they consider structure

amplitudes as observations with the exceptions of a few cases

(Ursby & Bourgeois, 1997; French & Wilson, 1978; Chiadmi et

al., 1993). When intensity observations are the starting points,

a common assumption is that there are no systematic errors in

the measurements.

Moving from multiple intensity observations to structure-

factor amplitudes using traditional merging approaches and

following French & Wilson’s treatment involves significant

loss of information, especially when intensity measurements

are referenced to one other. The lost information is the

covariance of the two measurements, which places important

bounds on the possible values of F1, F2 and �F. These bounds

are not used when the values of F1 and F2 are estimated from

independent intensity sets I1 and I2 by standard procedures;

therefore the accuracy gains of careful experimental design

are partly lost. The covariance between I1 and I2 becomes

especially useful when systematic or random errors force the

observations to become negative. A univariate Bayesian

treatment of strongly negative intensity observations results in

a broad, nearly indistinguishable exponential posterior

distribution with a mode/median/mean near zero. The poten-

tially more sensitive �F estimate obtained from equation (1)

is strongly affected by the small positive means/medians

derived from the truncated univariate normal distribution,

since this way F1 and F2 artificially inflate the �F estimates.

We propose a multivariate Bayesian model to treat pairwise

intensity observations which we evaluate with a Markov chain

Monte Carlo (MCMC) algorithm. The Bayesian algorithm

performs the merging step of X-ray crystallographic data

reduction and expects that the unmerged intensity observa-

tions are adjusted by the Lorentz–polarization and other

correction factors and normalized to the same scale. The

model even in its present form is relatively complex and yields

a posterior distribution with multiple variables. The posterior

probability is the integral over an N-dimensional space where

N is the number of variables; this yields an exponentially

increasing volume as a function of N according to the curse of

dimensionality. This makes it impossible to search the space

randomly to find the maximum. To be able to define the

maximum of posterior space we used the MCMC algorithm to

numerically estimate the multidimensional integral. Although

a more rigorous Bayesian analysis would incorporate scaling

factors and all unique reflections simultaneously, the compu-

tational costs are currently too high for all but the simplest

crystal structures.
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Figure 1
(a) Histogram showing the distribution of simulated data. Intensity
observations of set 1 (blue) and set 2 (green) and their pairwise difference
(set1 � set2) (red) are plotted with parameters F1true = 0.1, F2true = 0.7,
�sys = �0.5, �sys = 1.5 and �ran = 0.3. (b) The same data set represented as
a scatter plot. The observation pairs are shown as highly correlated blue
dots parallel to the diagonal (blue line).



2. Results and discussion

Two simulated intensity observation sets were generated

based on the true value of structure-factor amplitudes F1true

and F2true.

Intensity observation sets 1 and 2 were defined as

I1;n ¼ F2
1true þ Sn þ R1;n and I2;n ¼ F2

2true þ Sn þ R2;n ð2Þ

where Sn consists of n random Gaussian variables with a mean

�sys and �sys (sys = systematic), and sets R1 and R2 are

generated from n random Gaussian variables with �1 = �2 = 0

and �ran (ran = random).

Sn is equivalent to a collection of systematic errors affecting

both observations whereas R1,n and R2,n represent the random

errors that cannot be eliminated by referencing. It is most

meaningful to use referencing as a data collection strategy if

�sys 6¼ 0 and/or �sys � �ran.

Fig. 1 illustrates the simulated intensity observations of two

sets and the distribution of their pairwise differences. The off-

diagonal displacement of data points carries specific infor-

mation about the difference amplitudes and this displacement

can even be utilized for pairs of negative intensity measure-

ments.

We present an approach to improve the inference of

structure-factor amplitudes given the systematic and random

errors present in pairwise recorded intensity data. The basic

idea is that we treat pairwise intensity observations as part of a

bivariate joint normal distribution. The Bayesian model of

these observations thus consists of the following stochastic and

deterministic variables:

ðI1; I2Þ � MultivariateNormal ð� ¼ ðF2
1 ;F2

2 Þ,

� ¼
�1 0

0 �2

� �
�

�1 0

0 �2

� �
Þ (Barnard et al., 2000);

F1;F2 � Uniform ð0 � F1 � 108; 0 � F2 � 108Þ;

�1; �2 � logNormal ð� ¼ 0; � ¼ 1Þ (Barnard et al., 2000);

v � Uniform ð1 � v � 5Þ;

� � LKJCorrelationMatrix(v) (Lewandowski et al., 2009);

�F ¼ F1 � F2;

where � is a family of positive definite correlation matrices.

As v increases, the prior distribution of � increasingly

concentrates around the unit correlation matrix. At � = 1 �
reduces to the identity distribution. �1, �2 represents the

standard deviation of I1 and I2, respectively, and � is the

covariance matrix of the multivariate normal distribution.

Alternatively, the covariance matrix can be modelled directly

with the stochastic Wishart distribution (Wishart, 1928), but

using the current version of the PyMC3 library this led to

numerical instabilities in the MCMC sampling. The added

advantage of the model above is that prior distributions can be

defined intuitively for �1 and �2.

In the univariate Bayesian model, which is similar to the

method developed by French & Wilson, the pairwise ordering

of the data is ignored and intensity observations in I1 and I2

sets are modelled with univariate normal distributions:

I1 � Normal ð� ¼ F2
1 ; � ¼ �1Þ;

I2 � Normal ð� ¼ F2
2 ; � ¼ �2Þ;

408 Gergely Katona et al. � Estimating structure-factor amplitude differences Acta Cryst. (2016). A72, 406–411

short communications

Table 1
Relation of Bayesian estimators (median of the posterior distribution) to their true value determined under different error models.

The width of their credible interval is shown in parentheses (HDI, highest density interval, 95%). Bold values indicate a closer match to the target value.

F1true F2true �sys �sys �ran F1,multivariate F1,univariate F2,multivariate F2,univariate �Fmultivariate �Funivariate

0.1 0.7 �0.5 1.5 0.3 0.07 (0.26) 0.09 (0.24) 0.71 (0.10) 0.16 (0.38) �0.63 (0.25) �0.08 (0.51)
0.2 0.5 �1.0 1.5 0.3 0.06 (0.17) 0.06 (0.18) 0.48 (0.16) 0.07 (0.20) �0.41 (0.22) �0.00 (0.33)
1.0 0.1 0.0 2.0 1.0 0.98 (0.19) 0.85 (0.37) 0.16 (0.38) 0.14 (0.38) 0.82 (0.38) 0.70 (0.57)
3.0 0.5 �5.0 6.0 3.0 2.84 (0.25) 1.96 (0.49) 0.09 (0.32) 0.13 (0.37) 2.74 (0.45) 1.81 (0.64)
0.6 0.1 �0.5 1.2 0.4 0.63 (0.13) 0.09 (0.26) 0.06 (0.17) 0.06 (0.18) 0.56 (0.21) 0.03 (0.37)

Table 2
The influence of the number of observations and the choice of prior distribution on the posterior distribution of the parameters.

The data were generated with the following parameters: F1true = 0.1, F2true = 0.7, �sys = �0.5, �sys = 1.5 and �ran = 0.3 (Fig. 1). The width of their credible interval is
shown in parentheses (HDI 95%). Bold values indicate a closer match to the target value.

No.
observations F1,multivariate F1,univariate F2,multivariate F2,univariate �Fmultivariate �Funivariate

Uniform prior
(0–108)

3 0.43 (1.10) 0.50 (1.26) 0.78 (1.09) 0.64 (1.26) �0.31 (1.10) �0.10 (2.09)

6 0.30 (0.82) 0.34 (0.90) 0.79 (0.68) 0.45 (0.99) �0.45 (0.67) �0.07 (1.58)
12 0.30 (0.71) 0.33 (0.79) 0.77 (0.44) 0.57 (0.97) �0.45 (0.53) �0.20 (1.36)
24 0.20 (0.57) 0.23 (0.61) 0.64 (0.42) 0.30 (0.72) �0.42 (0.47) �0.06 (1.11)
48 0.13 (0.38) 0.14 (0.41) 0.66 (0.26) 0.21 (0.53) �0.51 (0.37) �0.05 (0.81)

Truncated normal prior
for F1 and F2,
� = 0.7, � = 7.0

3 0.43 (1.08) 0.51 (1.26) 0.78 (1.13) 0.63 (1.25) �0.30 (1.17) �0.09 (2.03)

6 0.31 (0.87) 0.33 (0.91) 0.79 (0.72) 0.44 (0.99) �0.45 (0.69) �0.08 (1.58)
12 0.29 (0.74) 0.32 (0.79) 0.77 (0.45) 0.57 (0.97) �0.46 (0.56) �0.21 (1.39)
24 0.20 (0.57) 0.23 (0.62) 0.64 (0.41) 0.30 (0.72) �0.42 (0.45) �0.05 (1.13)
48 0.14 (0.40) 0.15 (0.41) 0.67 (0.27) 0.22 (0.54) �0.50 (0.39) �0.06 (0.80)



F1;F2 � Uniform (0 � F1 � 108;

0 � F2 � 108);

�1; �2 � logNormal ð� ¼ 0; � ¼ 1Þ;

�F ¼ F1 � F2:
In Table 1 each row represents data

generated by specific parameters of

equation (2). In total 200 referenced

pairs were generated. We performed

two MCMC simulations using the

Metropolis stepping method consisting

of 50 000 iterations from which the first

20 000 iterations were discarded (burn-

in). No autocorrelation was detected in

the remaining parameter chain. The

results of a typical simulation are shown

in Fig. 2.

Bayesian inference also allows prior

information to be seamlessly incorpo-

rated into the models. The choice

becomes especially important when the

number of observations is low. In crys-

tallography the intensity distribution is

affected by the crystal symmetry and

scattering angle, and appropriate prior

distributions are determined from pools

of similar reflections (French & Wilson,

1978).

So far, we have used an unrealistically

high number of observations for two

reasons: firstly to minimize the influence

of prior distribution and secondly to

improve the reproducibility of the

calculations from randomized data sets.

As a next step we will compare two

weakly informative prior distributions

and a different number of observations.

Table 2 and Fig. 3 illustrate what

happens with the univariate and multi-

variate posterior distributions when the

number of observations is reduced. The

inference was then repeated with a

uniform and weakly biased truncated

normal prior distribution [F1 and F2 �

Normal (� = 0.7; � = 7 if F1� 0 and F2�

0)]. Already, at three observation pairs

the multivariate model appears to

provide a better difference amplitude

estimate than the univariate model and

the estimates improve with the

increasing number of observations

(Fig. 4). The univariate model becomes

worse as it is updated with more

observations and even a (weakly)

biased prior distribution cannot prevent

this deterioration. Table 2 also illus-

trates the importance of multiplicity and

partly reinforces the commonly held
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Figure 2
Posterior distributions of �F, F1 and F2 for the multivariate and univariate Bayesian models are
shown in (a) and (b), respectively (first row in Table 1). Black lines indicate the median of the
posterior distribution and blue lines show the borders of the credible 95% highest density interval
(HDI), which does not necessarily exclude equal tails.

Figure 3
Posterior probability distributions of the variables after three observation pairs starting from a
truncated prior normal distribution. The results from multivariate and univariate Bayesian models
are shown in (a) and (b), respectively. Black lines indicate the median of the posterior distribution,
and blue lines show the borders of the credible 95% highest density interval (HDI).



view that a high number of observations improves the accu-

racy and precision of intensity/structure-factor amplitude

estimates (Diederichs & Karplus, 2013). It also shows that in

certain cases this is only true for the multivariate model. The

main explanation for this counter-intuitive behaviour is the

presence of negative observations in the data sets and the

multivariate model clearly offers a better treatment for these.

A significant drawback of the MCMC algorithms is that

they are computationally demanding. We used the PyMC3

Python library (Patil et al., 2010) to perform 50 000 MCMC

(Metropolis stepping) iterations on a Linux workstation (i7-

3970X CPU at 3.50 GHz clock frequency) which took 35 s and

13 s for the multivariate and univariate model, respectively.

The Theano dependency (Bergstra et al., 2010) of the PyMC3

library allows for efficient evaluation of mathematical

expressions involving multidimensional arrays as well as the

use of graphical processing units (GPU) if available, but in this

work the GPU was not used. The calculation for each reflec-

tion can be independent and can therefore be easily paralle-

lized. Merging a crystal structure with 10 000 unique

reflections takes approximately 8 h with 12 parallel processes

and the above-mentioned CPU. Fortunately there is an ever-

increasing family of related Bayesian algorithms that promise

more efficient sampling/approximation of the posterior

distributions, for example the No-U-Turn Sampler (NUTS)

(Hoffman & Gelman, 2014) MCMC algorithm, Variational

Bayes (Attias, 1999) and the Laplace approximation

(Azevedo-Filho & Shachter, 1994).

For example, with the NUTS sampling method the length of

MCMC traces can be reduced by an order of magnitude while

achieving similarly accurate posterior estimates as with the

Metropolis sampling. The current implementation of NUTS in

PyMC3 frequently suffered from numerical instabilities in our

hands, but this is likely to change as the library emerges from

the beta development phase. Better difference amplitude

estimates can mean the difference between a crystal structure

solved by MAD/SAD (multiwavelength anomalous disper-

sion/single-wavelength anomalous dispersion) phasing and

failure. Often it is much more time consuming to obtain better

diffraction data and therefore the computational costs should

be seen from that perspective.

Referencing is the basic principle behind the inverse-beam

data collection strategy where pairs of reflections connected

through Friedel’s symmetry are recorded in short succession.

This way the difference in X-ray radiation damage between

the intensity measurement pairs is minimal and the two

measurements contain more information about the anomalous

structure-factor difference. Their intensity estimates can be

dramatically improved by taking into account the covariate of

the weak reflection. Similarly, in time-resolved pump–probe

studies the most detailed structural information regarding

atomic displacements is contained in weak reflections at high

resolution and these are strongly affected by Bayesian

assumptions during data processing. These experiments are

very often performed on the same sample in short succession

and it is therefore straightforward to incorporate the multi-

variate Bayesian treatment presented in this paper.

3. Conclusions

We have shown that a multivariate Bayesian model can

provide more accurate structure-factor amplitude estimates

from pairwise recorded diffraction intensities than univariate

modelling. We also demonstrated that this multivariate model

can be efficiently evaluated by an MCMC algorithm. We

anticipate that the accuracy gains will lead to improved
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Figure 4
Posterior predictive check of the multivariate model using three (a) and
48 (b) observation pairs. Each joint posterior distribution is represented
by a set of 95% isodensity ellipses (additive blue) from the MCMC trace.
The coordinates of the centre correspond to the posterior samples of F1

2

and F2
2 (red circles). The length and direction of the ellipse axes are

determined from the eigendecomposition (SciPy library function) of the
covariance matrix of each MCMC trace sample. Blue crosses indicate the
observations.



phasing results and more detailed difference electron-density

maps in time-resolved pump–probe diffraction experiments.
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