Cronstedtite-6T_2, a non-MDO polytype

Jiří Hybler

1. Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, CZ-18221 Praha, Czech Republic

email: hybler@fzu.cz

The new 6T_2 polytype of cronstedtite was identified, together with known 2H_1, 2H_2, 3T, 1M and probably 2M polytypes in the mineral assemblage of an ore veinlet in the active quarry near Pohled, Czech Republic. The GPS co-ordinates of the locality are 49°35’50.326”N, 15°39’49.730”E [1].

Lattice parameters are $a=5.4976(3)$, $c=42.601(1)$ Å, $Z=6$, space group $P\overline{3}$, composition (Fe$^{2+}0.515$ Fe$^{3+}0.485$) (Si1.515 Fe$^{3+0.485}$) O$_5$(OH)$_4$. The refinement converged to $R_{\text{obs}}=4.13\%$ for 3244 independent reflections [2]. The polytype belongs to the subfamily (Bailey’s group) A.

The structure is built of edge-sharing octahedral (Oc), and corner-sharing tetrahedral (Tet) sheets forming the 1:1 layers (corresponding to OD packets) by sharing apical corners of Tet sheet. There are two independent 1:1 layers, where the odd one is shifted with respect of the even one by $-(a+a_1)/3$ and raised by $c/6$ of the hexagonal cell. The sextuple multiplicity is achieved by mapping this pair of layers by 31 axis repeatedly to two other equivalent positions raised by $c/3$, $2c/3$. There are two tetrahedral and three octahedral sites per each 1:1 layer (T_1, T_2, M_1, M_2, M_3 in even layers, T_11, T_12, M_{11}, M_{12}, M_{13} in odd layers), all in general positions. The M_3, M_{13} octahedra are smaller than M_1, M_2, M_{11}, M_{12}, thus Oc sheets in both layers are meso-octahedral. In even layers, however, the M_2 octahedron is somewhat smaller than M_1, so the Oc sheet is “transitional” to a hetero-octahedral character. The occupancies of Si:Fe in T positions were refined to: T_1: 0.96:0.04(1), T_2: 0.63:0.37(1), T_{11}: 0.55:0.45(1), T_{12}: 0.89:0.11(1).

Ditrigonalization angles α are +11.4(5)º, and +10.9(5)º, in even and odd layers, respectively. Hydrogen positions were localized and geometries of hydrogen bonds linking the 1:1 layers were described. The structure is an example of OD structure of more than one kind of layers with a very low degree of desymmetrization. Cronstedtite-6T_2 is a non-MDO polytype, because more than one kind of packet triplets can be distinguished in the stacking sequence.

Another, quite different sextuple non-MDO polytype 6T_1 of the isostructural mineral lizardite [3] belongs to the group D.

The study was supported by the grant 15-0204S of the Czech Science Foundation.

References:
MS15-P12 Chemical preparation, crystallographic characterization and vibrational study of condensed phosphates associated to Barium-Cesium

BaCs\(\left(P_3O_9\right)_2\cdot2\text{H}_2\text{O}\)

Aziz KHEIREDDINE1, TRIDANE Malika1,2, BELHABRA Mustapha1, FAHIM Ismail1, MOUTAABBID Hicham3, MOUTAABBID Mohammed1, BELAAOUAD Said1

1. Laboratory of chemistry and physic of materials, University Hassan II- Casablanca, Morocco
2. Centre Régional des métiers d\’enseignement et de formation Casablanca, Maroc
3. Minéralogie, de Physique des Matériaux, et de Cosmochimie (IMPMC), University Paris 06, France.

email: kheireddine.aziz@gmail.com

Methods of chemical preparation and XRD data are reported for the new condensed phosphates associated to Barium-Cesium BaCs\((P_3O_9)_2\cdot2\text{H}_2\text{O}\). BaCs\((P_3O_9)_2\cdot2\text{H}_2\text{O}\) was prepared by the method of ion-exchange resin. This salt crystallizes in the monoclinic system, space group P2\(_1\)/n a = 7.6992(2) Å b = 12.3237(3) Å c = 11.8023(3) Å, \(\beta=101.181\degree\)) M(20) = 1313.35, F(20) = 1004.53 and \(V = 333.95(2)\) (Å\(^3\)), the vibrational study by IR absorption spectroscopy of the title compound reveals the presence of three bands and confirm the existence of non-equivalent positions of water molecules in the structure.

![Figure 1](attachment:image.png)

Figure 1. Projection of the structure Barium-Cesium BaCs\((P_3O_9)_2\cdot2\text{H}_2\text{O}\)

Keywords: condensed phosphates, ion-exchange resin, vibrational study

Figure 1. Structure of cronstedtite-6\(_T\), side view, projection close to \(a\). For sake of clarity, only a small part of every OD packet (1:1 layer) is displayed: one ring of tetrahedra and three adjacent octahedra. Delimitations of packets \((P_0, P_1, P_2,\ldots)\) are indicated on the right side.

Keywords: Cronstedtite, 1:1 layer silicate, polytypism, non-MDO polytype 6T2, crystal structure