MS20-P7 In-situ reduction of as-prepared γ-Iron Oxide Nanoparticles
Pelle G.R. Garbus1, Jakob Ahlburg1, Henrik L. Andersen1, Lukas Keller1, Mogens Christensen1

1. Interdisciplinary Nanoscience Center, Aarhus university, Denmark

email: garbus@inano.au.dk

Magnetic materials are a hot topic among energy-materials and they find applications in nearly all everyday consumer electronics. Advances in magnetic performance have in particular been made for thin film and nanosized particles, because the magnetic properties are strongly related to the size. Bulk iron is relatively unreactive, however iron on the form of nanoparticles are highly reactive due to the enlarged surface area and the oxidation potential of iron. Iron oxides are cheap and unreactive precursors for the production of nanosized iron particles. Understanding the mechanisms behind the structural development [1, 2] adds to the fundamental understanding of materials’ formation and can lead to new synthesis pathways. In this study, iron oxide (γ-Fe₃O₄) particles were heated to 400°C under a flow of H₂/Ar mixture, while the process was followed by in situ synchrotron powder X-ray diffraction measurement. The as-prepared maghemite nanoparticles were synthesized by the continuous decomposition of solutes in supercritical hydrothermal flow synthesis [3, 4]. The reagent used was ferric ammonium citrate (C₆H₅O₇·Fe(III)·yNH₃) that under hydrothermal flow synthesis decomposes into the γ-iron oxide Fe₃O₄. The reduction of maghemite to body centered cubic (BCC) iron does not go through a detectable intermediate state.


Keywords: In situ PXRD, reduction, maghemite, iron oxides, magnetic materials

MS21 Structural disorder and materials’ properties at ambient and non-ambient conditions

Chairs: Dmitry Chernyshov, Vaughan Gavrin

MS21-P1 HRXRD analysis of bonded Si / Si interface
Zoltán Balogh-Michels1, Zweacker Kai2, Zhang Yucheng3, Jung Arik4,5, Flötzgen Christian1, Chahine Gilbert4, Dommann Alex4, Enri Rolf4, von Känel Hans3, Neels Antonia1

1. Center of X-Ray Analytics, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
2. Electron Microscopy Center, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
3. Laboratory for Solid State Physics, ETH-Zürich, Schafmattstrasse 16, 8093 Zürich, Switzerland
4. EV Group, 4782 St. Florian/Inn, Austria
5. European Synchrotron, ESRF, Grenoble 38043, France

email: zoltan.balogh@empa.ch

Stress and strain can not only influence the structural behavior of the materials but can significantly alter their functional properties. The need for local, nanoscale characterization of stress levels and its correlation with other material properties increases rapidly. Scanning X-ray microscopy using synchrotron radiation is an emergent technique which can deliver fast, conclusive results with submicrometer real space resolution [1, 2]. On the other hand the technique is limited in its reciprocal space resolution by the pixel size of 2D detectors. This is especially important if high quality single crystals have to be characterized. Modern laboratory instruments therefore offer the complementary capability owing to their higher reciprocal space resolution.

In this study we investigated the stress distribution in Si wafer pairs which were covalently bonded at room temperature [3]. The wafer bonds were analyzed by the “nanodiffraction” ID01 beamline at ESRF (F) [1] as well as by a Bruker D8 Davinci HRXRD instrument at EMPA (CH). Transmission electron microscopy (TEM) was used for morphological analysis. The specific wafer bond shown in Fig. 1 exhibited bulk bond strength, but contained a ~ 3 nm thick amorphous interfacial layer in their as-prepared form. After high temperature annealing a network of dislocations emerged to compensate for rotation and tilt of the two wafers.

The built-in stress at the interface caused some long range changes in the diffraction patterns, which can easily be distinguished by lower spatial resolution laboratory scale devices. The evaluation of the rocking curve FWHM going through the bonding interface cross section (X-ray beam size 50mm) shows the overall silicon crystal