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Most materials used in engineering applications are polycrystalline, i.e. they consist of

many single-crystal grains that come together to form bulk polycrystalline micro-

structures. In these polycrystals, the least understood defect types are the interfaces,

which are present at the intersections of abutting grains with distinct lattice orientations.

Since the individual grains have an underlying lattice structure and correspond to specific

space-group symmetries, the properties of interfaces are analysed by first decoding the

crystallographic aspects of the two overlapping crystals (i.e. a bicrystal). This framework,

known as bicrystallography (Pond & Vlachavas, 1983), relies on group-theoretical aspects

of discrete lattices for determining the symmetries and the possible defect characteristics

of interfaces (Sutton & Balluffi, 1995).

One of the key concepts introduced in bicrystallography is the theory of the coin-

cidence site lattice (CSL), which has played a major role in classifying experimentally

observed interfaces in a wide array of inorganic polycrystalline material systems. The

CSL corresponds to the ‘intersection lattice’ formed by overlapping two misoriented

lattices (Grimmer, 1976). Associated with each CSL is the � number, defined as the ratio

of the volumes of the primitive unit cell of the CSL and the underlying single-crystal

lattice. Therefore, � quantifies the extent of overlap between the two misoriented

lattices. An example of this is shown in Fig. 1(a) for a two-dimensional square lattice,

where the two overlapping lattices are rotated by � ¼ 2 tan�1ð1=3Þ � 36:87� with respect

to each other. The CSL obtained has an area five times the original lattice, and hence

� = 5.

From an experimental perspective, the algorithm for determining the � value of an

interface is straightforward. First, the lattice orientations of the adjoining grains are

measured through orientation imaging microscopy either in the scanning (Schwartz et al.,

2009) or the transmission mode (Trimby, 2012; Caswell et al., 2009). The misorientation

matrix M is then computed and � is determined by the least positive integer such that

�M is an integral matrix. However, this algorithm is very sensitive to the precision with

which the lattice orientations are measured. For example, shown in Fig. 1(b) is the

bicrystal pattern obtained with a misorientation of � ¼ 2 tan�1ð18=53Þ ¼ 37:52�. As is

evident from this illustration, while the pattern changes ever so slightly from the � = 5

bicrystal, the � value associated with � ¼ 37:52� is 3133. This large difference in � stems

from the fact that the CSL theory relies on the exact coincidence of lattice points.

Therefore, a small error in the experimentally measured misorientation matrix can lead

to a large deviation in the computed � of the interface. This issue is particularly trou-

blesome for interfaces in low-symmetry crystal systems where a priori enumeration of �-

generating misorientations does not exist.

In this issue, Runnels presents a physically intuitive and mathematically elegant

framework to overcome the challenges of the discrete nature of the CSL theory (Runnels,

2017). The central idea developed in this article is that � can be computed by deter-

mining the extent of overlap between the atomic density fields of the two overlapping

lattices. First, instead of representing atoms as a discrete set of points, they are expressed

using continuous functions representing their probability densities. The functions used to

represent the atomic density are called mollifiers (Friedrichs, 1944) and have unique

properties that simplify the mathematics underlying the computation of the extent of

overlap between two lattice fields. Bump functions such as those shown in Fig. 1 of
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Runnels (2017) are example of such mollifiers. Truncated

Gaussian functions typically suffice as mollifier approximants

and are convenient for analysis. Mollifiers, whose integral in

space is unity, serve as intuitive representations of atomic

density. For example, the width of the mollifiers (e.g. in a bump

function) can be tuned using a parameter " that serves as a

proxy for temperature.

Additionally, the extent of overlap between two lattices is

shown to correspond to the integral of the product of the two

lattice density fields that are misoriented with respect to each

other. This integral is computed efficiently using a Fourier

representation of the periodic lattice densities. By introducing

a continuous functional representation of the atoms in the

lattice sites, the discrete nature of the � function is ‘mollified’.

That is, � is now a continuously varying, smooth function of

the lattice misorientation. The value of � also changes with

temperature as the parameter " in the mollifier depends on the

temperature of the system. Therefore, this theory will facilitate

an accurate determination of the � associated with experi-

mentally measured misorientations and can further help

validate theoretically predicted CSL rotations in low-

symmetry material systems.

Finally, the lack of simple relationships between interfacial

crystallography and properties has been identified as one of

the key challenges in designing structural alloys for extreme

environments. Therefore, it is desirable to utilize the quan-

tities that represent the extent of overlap, given by � for the

three-dimensional lattices and by � for the planar density of

coincidence sites (Banadaki & Patala, 2015), to predict

properties such as interfacial energy. Unfortunately, the

traditional definition of � has not led to any useful or general

criteria for correlating interfacial crystallography with prop-

erties. It is anticipated, however, that the regularized version

of the � function introduced by Runnels will provide a

pathway for developing predictive rules for interfacial prop-

erties based on a simple geometrical framework. Such rules,

elucidating the interfacial crystallography–property relation-

ships, will help provide a key component in the micro-

structure-sensitive design of structural materials.
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Figure 1
The irregular nature of the � function is illustrated. In (a), the bicrystal pattern obtained of a �5 CSL, which corresponds to a misorientation of
� ¼ 36:87�, is shown. In (b), a bicrystal pattern with misorientation � ¼ 37:52� is shown. While there is only a slight change in the extent of overlap
between the lattices from (a) to (b), the value of � changes from 5 to 3133. In fact, for all misorientations where tan �=2 is irrational, a coincidence site
lattice does not exist and � ¼ 1. The atoms in this illustration are represented using the mollifier � ¼ exp½1=ð1� x2Þ�; x 2 ½�1; 1�; 0 else

� �
(Runnels,

2017).
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