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The intimate relationship between the Penrose and the Taylor–Socolar tilings is

studied, within both the context of double hexagon tiles and the algebraic

context of hierarchical inverse sequences of triangular lattices. This unified

approach produces both types of tilings together, clarifies their relationship and

offers straightforward proofs of their basic properties.

1. Introduction

From the very beginning, aperiodic tilings have played a

significant role in unraveling the mysteries of aperiodic crys-

tals. Knowing what is mathematically possible has often

turned out to be a crucial element in conceiving what might be

physically realizable. In this paper we discuss two remarkable

aperiodic tilings of the plane that are built out of one of the

most basic of all crystallographic structures: the standard

periodic hexagonal lattice.

Also, from the very beginning, there arose the question of

what might be the minimum number of different prototiles

necessary for a system of tiles and corresponding matching

rules that permit, and only permit, aperiodic tilings. The very

first aperiodic tilings involved thousands of prototiles. The

famous aperiodic tilings of the plane like the rhombic Penrose

and the Ammann–Beenker tilings are each based on just two

prototiles, the allowable motions being translations and rota-

tions. This of course immediately raises the question of

whether aperiodic tilings based on just one prototile are

possible.

Taylor (2010) and Socolar & Taylor (2011) introduced a

planar aperiodic tiling which can be built from a single

hexagonal prototile allowing translations, rotations and

reflections. The tiling is based on the familiar hexagonal tiling

of the plane, but if one distinguishes the prototile in its direct

and reflected forms, then the matching rules allow only

aperiodic tilings to appear. Their work revived interest in the

much earlier work of R. Penrose. In Penrose (1997), he had

introduced an aperiodic tiling, also based on marked hexa-

gonal tiles, but additionally involving two other types of thin

edge tiles and small corner tiles, which he called a ð1þ "þ "2Þ

tiling. However, already in this paper he had introduced

arrowed double hexagon tiles as an alternative way to repre-

sent the tiling (see Fig. 1). Later, in his online notes (Penrose,

2010) he expanded upon the double tile theme and pointed

out the essential matching rules that make them work.

In both the Taylor–Socolar and Penrose cases, the

‘matching rules’ somewhat stretch the original notion of
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matching rules, so there can remain some controversy about

whether these are strictly aperiodic monotiles. However, that

is not an issue here. These tilings are interesting, and puzzling

too, for although the Taylor–Socolar hexagonal tilings,

henceforth called Taylor–Socolar tilings or T–S tilings, and the

Penrose hexagonal tilings (Penrose tilings1) seem deeply

related, that relationship is somewhat obscure. The two tilings

are not mutually locally derivable (MLD) (Baake et al., 2012;

Baake & Grimm, 2013) in the technical sense, but are mutually

derivable in a rather different sense that we shall explain.

In Lee & Moody (2013) we put forward a development of

the T–S tilings based on the underlying hierarchical system of

nested equilateral triangles that are so prominent in both the

T–S tilings and the Penrose tilings. The aperiodicity of the

tilings comes from this hierarchical structure, and indeed these

tilings seem to have been invented with precisely this feature

in mind. The structure of nested triangles has an algebraic

interpretation as an inverse system of finite groups, arising

from the standard triangular lattice and its natural triangular

sublattices, and is closely related to the 2-adic integers. In Lee

& Moody (2013) we made this algebraic interpretation the

basis out of which we constructed the T–S tilings. In fact, as

long as the nested system of triangles is generic, meaning that

it is free of singularities (like points which are simultaneously

the vertices of triangles of unbounded size), then there is a

unique T–S tiling belonging to it. We shall see that the same

type of mathematics applies to the Penrose tilings, and not

surprisingly the two inverse systems are deeply connected.

A more detached look at the double hexagon tilings reveals

that they actually incorporate both types of tilings simulta-

neously. This association is not entirely new (Baake et al., 2012;

Baake & Grimm, 2013), but in this paper it is the double

hexagon tilings that are taken as the fundamental objects and

they serve as the parents of the two individual types (Penrose

and T–S) of hexagonal tilings. Thus, we may think of the two

tilings as siblings of each other. Algebraically, a double

hexagon tiling corresponds to a matched pair of inverse

sequences, and with these we can see how the algebra and

geometry fit seamlessly to elucidate each other. The paper

offers a unified treatment of the two tilings along with proofs

of the implied hierarchical structuring and the aperiodicity.

2. Double hexagon tiles and their tilings

An arrowed hexagon is a regular hexagon in which each side

has been given a direction, indicated by an arrowhead. An

arrowed hexagon is called well arrowed if, up to rotation, the

arrows form the pattern shown on the right side of Fig. 1. In

fact, all three hexagons in this figure are well arrowed. The

structure of the well arrowed hexagon gives it a well defined

orientation in the plane, namely that provided by the two

parallel arrows facing in the same direction.

If we start at any edge of a well arrowed hexagon and then

look at every alternate edge as we go around it, we notice that

arrows on the three edges always are a mixed type of clock-

wise and counter-clockwise. We notice also the useful fact that

if we have a hexagon and three alternate edges have been

arrowed so as to be of mixed type, then there is a unique way

to complete the arrowing to make it into a well arrowed

hexagon.

A hexagonal tiling of the plane with well arrowed hexagons

is called well matched if the hexagons meet edge to edge and

the arrows of these coinciding edges also coincide – that is,

they point in the same direction. We are only interested in well

matched tilings of arrowed hexagons.

A double hexagon tile (or double hex tile) consists of a pair

of well arrowed hexagons, one within the other, as shown on

the left side of Fig. 1. The inner hexagon is centered within the

outer one with its orientation at right angles to the orientation

of the outer one. Its size is chosen so as to make the outer

hexagon three times the area of the inner hexagon (so there is

a linear scaling factor of
ffiffiffi

3
p

). There are, up to rotational

symmetry, only two double hexagons (of any particular size)

(see Fig. 4). When three double hexagons meet at a vertex, the

gray parts around the vertex form another hexagon. We call

these types of hexagons corner hexagons.

Suppose that we have a hexagonal tiling of the plane with

double hexagons. By this we mean that we are using the outer

hexagons as the tiles. Suppose that from the perspective of the

arrowing on the outer hexagons this hexagonal tiling is well

matched. Three outer hexagons meet at every common vertex

v, and the three edges of the corresponding inner hexagons

that are closest to v form three edges of a corner hexagon H

centered on v. With the terminology introduced above we can

ask whether or not these three arrows are mixed. If they are

mixed then we can extend the arrowing to make H well

arrowed.

Suppose that all the corner hexagons of the tiling can be

well arrowed in this way. Collectively, the inner hexagons

together with the corner hexagons form another hexagonal

tiling of the plane, if we ignore the question of their arrows

matching. However, there does arise the question of whether

or not all the common edges of adjacent small hexagons

actually do have matching arrows, that is, whether or not this

new tiling is well matched. The double hexagon tiling is called

research papers

Acta Cryst. (2017). A73, 246–256 Lee and Moody � Penrose and Taylor–Socolar hexagonal tilings 247

Figure 1
A well arrowed hexagon is shown on the right. It has one pair of opposite
sides whose arrows face in the same direction, thus providing an
orientation for the tile. A double hexagon tile is on the left, the key
feature being that the orientations of the inner and outer arrowed
hexagons are at right angles. When three double hexagon tiles meet at a
vertex, the gray parts around the vertex form corner hexagons (see Fig. 2).
The assumption of legality allows completion of the arrowing on the
corner hexagons to well arrowed hexagons, as indicated on the right.

1 Since Penrose tilings based on fivefold symmetry are so much a part of the
aperiodic culture, we should emphasize that the Penrose tilings of this paper
are based on hexagons and have nothing to do with the rhombic or kite/dart
Penrose tilings.



legal if they do. Thus, a double hexagon tiling is legal if its

outer hexagons are well matched, all of its corner hexagons

can be completed to well arrowed hexagons, and the conse-

quent well arrowing of the small hexagons completes to a

small hexagon tiling of the plane which is well matched. In this

situation we have two well matched hexagonal tilings, one

using the large hexagons and the other using the small ones,

inner and corner hexagons. Fig. 2 shows a patch of a legal

double hexagon tiling.

The double hexagon tiles that we are discussing are also

called Penrose hexagonal tiles and a legal tiling is a Penrose

hexagonal tiling. We shall use both names in this paper,

because within the context of understanding the intimate

relationship between Penrose hexagonal tilings (based on the

large hexagons) and Taylor–Socolar hexagonal tilings (based

on the small hexagons), it is convenient at times to simply

think in terms of legal double hexagon tilings.

3. Decorations and triangles

There are other decorations of well arrowed hexagons and

double hexagon tiles that are equivalent representations of the

arrowing but help to make the underlying geometry of the

tilings more transparent. The first of these is the marking of

well arrowed hexagons shown in Fig. 3, which replaces the

arrows of a well arrowed hexagon with a black stripe and two

black corner markings (see Socolar & Taylor, 2011). Initially,

we will use this representation of the arrowing with the small

hexagons, and later for the outer hexagons.

Notice that when two well arrowed hexagons are attached

along some edge so that the corresponding arrows match (i.e.

they are well matched), the black markings line up, either

stripe to stripe, stripe to corner, or corner to corner, to create

an extended black path. In fact, that the stripes and corner

markings match to form extended paths is exactly the same as

arrow matching. In the resulting paths the corner markings

indeed serve as corners at which the direction of the path

changes. If we have a well matched tiling of well arrowed tiles,

we will have also a set of paths. It is easy to see that if, in

following a path (see Fig. 18 as an example), it turns right or

left at a corner, then at its next corner it will turn in the same

sense (again right or again left) and so the resulting paths will

be equilateral triangles (the corners create 60� angles).

The only way this can fail is if there are paths that extend

infinitely in some direction along some straight line. A tiling

with such a path is called a singular (or non-generic) tiling.

Later on we will examine the similar paths created by the

stripes and corner markings on the large hexagon tiles, and the

same issue of singularity will arise.

The generic situation is that of non-singular (or generic)

tilings, that is, all of the paths form triangles. In this paper, in

order to keep all the essential ideas clear, we shall always

assume non-singularity, though at this point we need it only

with the small hexagons and their markings. The resulting

triangles come in various sizes and arrangements, and this is

something we address in the next section.

The second decoration is one that we make to double

hexagon tiles, replacing the outer arrowing by colored short

diagonals (short diagonals are the ones that pass at right

angles between opposite edges, as opposed to long diagonals

that pass from vertex to opposite vertex). This is explained in

Fig. 4.
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Figure 2
A legal patch of double hexagon tiles. Where three double hexagons meet
at a vertex, a corner hexagon is created. Note the mixed arrowing of these
small gray corner hexagons.

Figure 3
Well arrowed hexagonal tiles can be converted into hexagonal tiles with
stripes. These decorations fit together to make triangulations of the plane.

Figure 4
Arrows on the edges of the outer hexagon which are oriented in the
counter-clockwise direction are represented by short red half-diameters.
For arrows in the clockwise orientation we use short blue half-diameters.
If we include the striping decoration of the inner hexagons as well (Fig. 3),
we arrive at the fully decorated double hexagons shown on the right-hand
side of the figure. Evidently the decorated tiles carry information fully
equivalent to the arrowing. Notice that proper matching of the edges of
outer hexagons is equivalent to a change of color as the short diagonal
passes through the common edge. Also notice that if one holds the black
stripe horizontally, then as one moves along a full blue diagonal from
right to left, the diagonal passes through the black stripe from above to
below. It is the other way around for red stripes. We use this observation
to make the color determination of the short diagonals in Fig. 10.



If we begin with a legal double hexagon tiling then we know

that we end up with two well matched hexagonal tilings: one of

large hexagons and one of small hexagons. Since we are

assuming non-singularity, the well matching of the small

hexagons leads to a collection of triangles on the plane –

equilateral triangles created by the stripes on the small

hexagons. Each small hexagon has an inner part of some edge

of a triangle across it and the corners of two other triangles,

one on each side of that edge, so altogether each small

hexagon is involved with three triangles.

The very smallest triangles (called level 0 triangles) are

those composed by putting three corner markings together

around a common vertex of three small hexagons. Every stripe

in a hexagon obviously belongs to a triangle larger than these

smallest ones. Indeed there are triangles of ever-increasing

sizes, without limit. It is this result that we will establish in the

next section.

4. Nesting and hierarchy

Let us continue with a non-singular legal double hexagon

tiling D, in which we have completed its small hexagons to a

well matched hexagonal tiling and then resolved everything

into triangles by decorating each of the small hexagons.

A triangle is nested in another one if it appears as in Fig. 5,

where the smaller triangle is nested in the larger. In this

section we will prove that except for the very smallest triangles

(the ones made from three corners) every triangle has another

one nested inside it. From this, we will see that every triangle

has inside it a sequence of triangles nested within each other,

diminishing in size to the smallest-size triangles. We refer to

this phenomenon by saying that all triangles are nested within.

There is more to this. Let us stretch out, or expand, the

triangles created by the decorations of the small hexagons

(inner hexagons and corner hexagons) so that the corners

meet the edges of the triangle surrounding them, as illustrated

in Fig. 5. In doing this each nested triangle produces three

neighbors that fill out the whole triangle that it lies in. In fact,

there is a nesting that involves one triangle sitting inside

another of exactly twice the linear size, so that the larger

triangle is decomposed into four equal-sized equilateral

triangles of which the nested triangle is one. The three trian-

gles that emerge as neighbors of the nested one are called

corner triangles (not to be confused with the smallest triangles

that we formed out of three corner markings).

We will speak of the patterns of triangles (expanded or not)

which are formed by the decorations of the small hexagons as

arrangements of triangles and derive their nesting properties as

we proceed. Notice that without the implications derived from

the decorations of the outer hexagons it is possible to get an

arrangement of triangles like the one shown in Fig. 6, which is

visibly periodic.

In all, we shall see that triangles that are nested within

appear on ever-increasing scales, so there is a hierarchical

structure. We shall call such an arrangement of triangles a

nested triangulation.

When we refer to the sizes of triangles in one of the

arrangements of triangles, we will always refer to the side

lengths of the stretched-out versions. Lengths are normalized

so that the smallest triangles will be of side length equal to 1.

We will see that with this normalization all lengths are powers

of 2.

In the sequel we will commonly use both versions of the

triangles and nested triangles that emerge from our discussion

– the original ones that come from the decorated hexagons
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Figure 5
The green (smaller) triangle is nested in the larger (black) one. Notice the
two ways of drawing this. A patch of triangles that arise from our tiling
presents the inner triangles as being totally in the interior of the outer
ones, as shown on the left-hand side here. We often will wish to allow the
inner triangles to stretch to meet the boundaries of the outer triangles, as
shown on the right-hand side of the figure. This creates three new
triangles called corner triangles, so that the outer triangle is now
decomposed as four equal-sized triangles.

Figure 6
Periodic arrangements of triangles are possible if only decorations of the
small hexagons are used.

Figure 7
On the left side the black triangles form an opposite pair of triangles. So
too do the pairs of smaller triangles labeled A;A0 and B;B0. On the right-
hand side the two black triangles do not form an opposite pair, but the
two purple triangles C;C0 do.



and the stretched-out ones that give us the arrangements of

triangles. Once we have proved that all triangles are nested

within, it is trivial to convert from one picture to the other.

In the stretched-out version, two triangles are said to make

an opposite pair if they are of the same size and share a

common edge (see Fig. 7). Notice that there is no specification

of how each of the two opposing triangles fits into the overall

arrangement of triangles.

Proposition 4.1. Let D be a non-singular legal double

hexagon tiling. Complete its small hexagons to a well matched

hexagonal tiling and let T be the resulting arrangement of

expanded triangles formed from the decorations of the small

hexagons. Then

(i) all triangles occur in opposite pairs;

(ii) the side lengths of the triangles are all of the form 2k for

some k ¼ 0; 1; 2; . . . (k is called the level of the triangle);

(iii) every triangle is nested within.

The proof of proposition 4.1 is by induction on the size of

triangles. The smallest triangles have side length 1 ¼ 20 (level

0). There is no nesting within to take place. The stretched

triangle pattern created by these triangles is in itself a genuine

triangular lattice of the plane and, in particular, every triangle

edge borders an opposite pair of triangles.

We now assume that the three statements of proposition 4.1

have been proved up to some level k.

First we check that there must be triangles of size larger

than 2k. Fig. 8 shows why. It shows a triangle of level 2k and

uses matching triangles to see that there must be larger ones.

We now take any triangle T of the next size, say m, that is

larger than 2k. We see immediately that m ¼ 2kþ1 and it is

internally nested, in the right way (Fig. 9). This completes the

induction steps for parts (ii) and (iii).

We now come to the proof of part (i). It is useful to prepare

this by looking at the situation pictured in Fig. 10. What this

shows is how the coloring of the tile decorations is related to

the matching of opposite triangles. The color rules show that

as a color diagonal crosses a triangle edge at right angles it

changes color. When it crosses an edge that is not at right

angles to it then it does not change color, but, as we have
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Figure 8
v is a vertex of a triangle (shown in black) of level k. At v there is a small
hexagon and its stripe allows for only two things to happen: either one of
the edges of the triangle extends through v, in which case it is an edge
from a larger triangle, or there is an edge passing through v that is parallel
to the opposite edge of the triangle. In the latter case we use (i) of
proposition 4.1 to place down the two opposite pairs of triangles of
adjoining triangles, shown in green (the adjacent edges are actually
coincident edges of course). Then we see that the edge through v must
actually be an edge that includes both the top edges of the green triangles:
thus again a larger triangle.

Figure 9
We are given a triangle T of minimum size larger than 2k. From one of its
vertices (we have taken it as the top one here) we fit in the largest sub-
triangle possible (at the very least, there is always a triangle of level 0 that
can be fitted in). Its lower side is indicated in green. It must turn inwards
at the sides of T and complete to the opposite green triangle. By the
induction assumption its other two sides also complete to opposite pairs,
and this leads to the new black triangle with the green triangle nested in
it. Since we started from a maximal-sized sub-triangle, this larger black
triangle must in fact be the entirety of our original triangle T. This shows
that T has edge length 2kþ1. The visible nesting and the induction
hypotheses show that the new triangle is nested within.

Figure 10
In the center of the figure we see the large pair of triangles making a
diamond shape between the two extreme vertices v and v0, which are
assumed to be vertices arising from centers of the large hexagons of the
double hexagon tiling. The diamond is made up of an opposite pair of
fully internally nested triangles. The triangles are all in their stretched
form, but the line thicknesses indicate the nesting relationships. On the
left side we see the corresponding arrangement of double hexagons that
surround the small hexagons between v and v0. The arrows must match,
but their common orientation in the horizontal direction is irrelevant
here. There is a color change as we cross each triangle edge at right
angles. The key point is what happens at the ends of the diamond as the
color line crosses edges (indicated by the thickest lines) which are not at
right angles to it. The main edge at v is shown by the heavy black line. The
rules for coloring hexagons show that the color stripe is fully red here, see
Fig. 4. The main edge at v has to be matched with its partner at v0, where
the color strip changes to fully blue. Notice the correct color change at the
arrow. The scenario shown on the right side of the figure, where the main
edge at v0 is shown in purple, cannot occur because of the color change
violation at the brown arrow.



noted in the caption to Fig. 4, its color is related to the way in

which it crosses the edge. This figure is the basis for our proof

of matching triangles.

Continuing to the proof of (i), we start with a triangle T of

level kþ 1 and show that it must be matched by a triangle of

the same level on each of its sides. Let S be the largest equi-

lateral triangle nested in it. Now, any equilateral triangle of

any level 2r in our arrangement of triangles has exactly one

vertex at the center of a large hexagon of the double hexagon

tiling. This has to do with the lattice structure induced by the

arrangement of triangles coming from the double hexagon

tiling, and though pretty self-evident in the figures, is

explained algebraically in x5. In Fig. 11 we have made such a

choice, indicating it by the small yellow hexagon at v. We shall

use this coloring convention to mark other vertices that are

centers of the large hexagons. We shall start by showing that

there must be matching triangles to T on the two sides of T on

which v does not lie.

The triangle S creates a partition of T into itself and three

surrounding triangles, and we know that each of these must

have an opposite match. We show these matching triangles

along the lower edge of the T solid edge. The shape of the

small hexagon at their intersection w must be of the type

shown in Fig. 11. What does the small hexagon at v0 look like?

The caption to Fig. 11 shows that neither of the two possibi-

lities shown there is possible. Thus, the remaining possibility,

which is that of a matched triangle for T, must occur. This is

illustrated on the left side of Fig. 12. This same argument can

be applied to the other side of T which does not contain the

point v.

There remains the task of proving that the side that contains

v also matches T to a triangle of the same size. Let us suppose

that on this side the matching fails. The argument we have just

used tells us that in this case on this side we will see a triangle

X which aligns its corner at the point v. The point x is the

center of a double hexagon, just like v was, so it follows by

what we have proved that the triangle Y shown exists and

matches it. Again, it has a point y which is a double hexagon

center and so Y produces the matching triangle Z. But this

is clearly a contradiction since Z overlaps but does not

coincide with the triangle T. This contradiction shows that

there is a matching opposing triangle along the edge of T

containing v.

With this we conclude part (i) of proposition 4.1 and so the

entire proposition. &

Since there are triangles of every level, it is impossible that

there are any translational symmetries.

Proposition 4.2. Every non-singular legal double hexagon

tiling is aperiodic.

Looking at Fig. 13 we see:

Proposition 4.3. In any small hexagonal tile the triangles

that arise from its two opposite corner markings are of the

same size.

For future reference we also note (see Fig. 5):

Proposition 4.4. In the nested triangulation created by the

standard edge and corner markings of arrowed hexagonal

tiles, every stripe forms the central part of an edge of some

triangle.
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Figure 12
The left-hand side shows the matching that has to take place on the lower
side of T. The right-hand side shows what happens if there is not an
opposite match to T on the side containing v. This corresponds to the
right-hand side of Fig. 11. Chasing around the pairs of opposite matching
triangles yields X;Y;Z and the latter is clearly totally mismatched with T.

Figure 13
The two triangles whose corners make up the pair of corner markings on
a well arrowed tile are always of the same size. Here the pair of triangles
is shown in black. The matching on opposite sides of triangles leads to the
red and green matched triangles. Since these too must match, we see that
all four triangles are of the same size. Note that there is no presumption
here about how these triangles lie in larger triangles.

Figure 11
The vertex v is the unique vertex of triangle S which is the center of a
double hexagon tile. The two lower corner triangles formed in T, with
common vertex w, have opposite triangles shown in purple. The question
is, what happens at the vertex v0? Neither of the two possibilities shown
here can occur. On the left, the triangle with vertices v0 and w would be
left unclosed at w. On the right we are in the situation shown on the right
side of Fig. 10, which we know violates the color change property.



5. The algebra of nested triangulations

If we start with a non-singular legal double hexagon tiling then

we obtain a tiling of the plane with the small hexagons. The

centers of these hexagons form a triangular lattice of the plane

composed of level 0 (side length 1) equilateral triangles, as we

have seen. For definiteness we now specify this lattice as a set

of points in R2, namely the set of points Q ¼ Za1 þ Za2 � R
2,

where a1 ¼ ð1; 0Þ, a2 ¼ ð�
1
2 ;

ffiffi

3
p

2 Þ (Fig. 14). Joining nearest

neighbors of Q produces the triangular lattice of level 0

triangles, indicated by the thin lines in Fig. 15.

We know that there are also triangles of level 1 (side length

2). They are matched across each of their edges, and so there is

a second triangular lattice of the plane by equilateral triangles.

This meshes precisely with the first, in the sense that each level

1 triangle is composed of four level 0 triangles. The vertices of

the level 1 triangles form a coset q1 þ 2Q of Q.

We may repeat this process, now looking at triangles of level

2, whose vertices lie on a coset q1 þ q2 þ 4Q (where q1 2 Q

and q2 2 2Q). Continuing this way we are led to view our

nested triangulations in terms of ever-refined cosets from the

sequence

Q � 2Q � 4Q � 8Q � . . . :

Thus, the double hexagon tiling leads to the sequence

q ¼ ðq1; q1 þ q2; q1 þ q2 þ q3; . . .Þ;

where each qk 2 2k�1Q. We refer to such a sequence as a

Q-nested triangulation T . Indeed, we see that any such

sequence corresponds to a sequence of triangular lattices with

each level nested within the next, that is to say every triangle

of one level appears as a corner triangle or as a central triangle

within a triangle of one level higher. Specifically, up to

rotation a typical triangle of level k has vertices x, xþ 2ka1,

xþ 2kða1 þ a2Þ, all of them lying in one coset

q1 þ . . .þ qk þ 2kQ, where we assume k � 1. The midpoints

of its edges are xþ 2k�1a1, xþ 2k�1ða1 þ a2Þ,

xþ 2k�1ð2a1 þ a2Þ, which form the vertices of a triangle of

level k� 1 in the coset q1 þ q2 þ . . .þ qk�1 þ 2k�1Q, hence

the nesting.

The sequence q can be interpreted as a Q-adic element of

the inverse sequence

Q : Q=Q Q=2Q Q=4Q Q=8Q . . . ð1Þ:

This sets up a bijective correspondence between Q-adic

numbers and nested triangulations, and we will write

T ¼ T ðqÞ when we wish to make the connection explicit. In

the sequel Q will be written as Q0, the first in a series of such

inverse limits.

The condition of non-singularity has algebraic conse-

quences. The Q-nested triangulation is singular if some of

the paths created by the stripes of the small hexagons do not

close, but rather extend indefinitely. Since the directions of the

stripes are all in the a directions of the lattice Q (see

Fig. 14), this is equivalent to saying that there is an infinite

path of consecutive edges in some direction a 2

f�a1;�a2;�ða1 þ a2Þg and this in turn implies that q lies in

xþ Z2a for some x 2 Q. Here Z2 is the 2-adic integers. We

need to avoid q having this form. See Lee & Moody (2013) for

more details.

In order to interpret the double hexagon tiles in this alge-

braic setting, we need, along with Q, its Z-dual P, relative to

the standard dot product on R2. Thus P ¼ Zw1 þ Zw2 where

w1 ¼
2
3 a1 þ

1
3 a2 and w2 ¼

1
3 a1 þ

2
3 a2 (Fig. 14). We note that

P � Q � 3P � 3Q � 9P � . . . ;

all the steps being of index 3. In fact, each of the lattices in this

chain is a scaled and rotated version of the one before it, and

in particular a scaled and rotated version of the original

triangular lattice Q. They are all triangular lattices. We do not

use P directly in what follows, but rather 3P, since we wish to

keep everything inside the initial lattice Q.

There are two clear differences between the triangular

lattices arising from Q and 3P. The first is that the basic

triangles in 3P have side length
ffiffiffi

3
p

, so factors of
ffiffiffi

3
p

relate

scales of Q- and 3P-nested triangulations. The second is that

the directions of the sides in all the Q-nested triangulations (at

all scales) are f�a1;�a2;�ða1 þ a2Þg, which we are referring

to as a directions, and those for 3P-nested triangulations are

f�3w1;�3w2;�3ðw2 � w1Þg, which we call w directions. These

two sets of directions are interchanged by 90� rotations.

In a legal double hexagon tiling the large hexagons enclose

one third of the vertices of the small hexagons, and their

centers form some coset cþ 3P of Q mod 3P. This brings us to

a second inverse sequence of groups based on 3P; 6P; 12P; . . .
and corresponding group Q1 which is related to Q0 as shown in
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Figure 15
A nested triangulation of the plane. Triangulations of increasing scales
(four are shown here) coexist in one underlying triangulation. Each
increase in scale can be created in four different ways by choosing one
vertex of the previous scale as a reference point.

Figure 14
The basis vectors for the lattices Q and P. The directions of edges in the Q
triangulations are�a1;�a2;�ða1 þ a2Þ, which are called a directions, and
those of P triangulations are �w1;�w2;�ðw2 � w1Þ, which are called w
directions.



the commutative diagram (2). All the mappings here are the

natural homomorphisms that arise from factoring out larger

subgroups.

Q0 : Q=Q  � Q=2Q  � Q=4Q  � Q=8Q  	 	 	

" " " " "

Q1 : Q=3P  � Q=6P  � Q=12P  � Q=24P  �	 	 	

ð2Þ

Given the choice of q 2 Q and c 2 Q=3P, there is a unique

element

r ¼ ðr1; r1 þ r2; r1 þ r2 þ r3; . . .Þ;

where rk 2 2k�13P for each k, which maps onto q and has

r1 
 c mod 3P. This follows from the more general fact:

Lemma 5.1. For all k; l 2 N,

3k2l�1P \ 3k�12lQ ¼ 3k2lP and 3k2lP \ 3k2l�1Q ¼ 3k2lQ:

Proof: dividing out common powers of 2 and 3, we are

reduced to proving that 3P \ 2Q ¼ 6P and 2P \Q ¼ 2Q,

respectively, both of which are trivial to verify. &

So, given a non-singular legal double hexagon tiling, we

arrive not only at an element q 2 Q0 but also an element

r 2 Q1. This element picks out one coset rk þ 2k3P for each

k ¼ 0; 1; 2; . . . and so should determine a family T þðrÞ of

nested triangulations, just the same way as q did. To guarantee

that we really do have a non-singular 3P-nested triangulation,

that is to avoid infinite lines, we have to make an assumption

similar to the non-singularity assumption that we have already

seen. This time the triangle edges are in w directions, so we

must assume that r does not lie in xþ Z23w for any

w 2 fw1;w2;w2 � w1g.

Thus, the joint conditions equivalent to non-singularity are

that for all x 2 Q:

(i) q does not lie in xþ Z2a for any a 2

f�a1;�a2;�ða1 þ a2Þg;

(ii) r does not lie in xþ Z23w for any w 2 fw1;w2;w2 � w1g.

These are the same conditions as appeared in Lee & Moody

(2013), though we did not use double hexagon tilings there.

We will pursue the detailed study of the singular double

hexagon tilings in another paper.

Returning to our discussion, the situation is this. We are

given a generic legal double hexagon tiling whose small

hexagons are centered on Q and whose large hexagons are

centered on cþ 3P. We thus have two nested triangulations

T ðqÞ and T þðrÞ, the first being determined by the markings on

the small hexagon tiles and the second simply by the algebra of

the commutative diagram (2). Since the large hexagon tiles

can be given their own stripe and corner markings based on

their arrowing in just the same way as we did for the smaller

hexagons, it is natural to ask whether or not this new nested

triangulation based on r 2 Q1 is the one that these markings

create. In fact, this is indeed the case. Here is the argument. As

a matter of nomenclature, we will use the same concept of

level for the new triangulation T þðrÞ as we did before. The

smallest triangles are said to be of level 0 with side lengths

equal to
ffiffiffi

3
p

, and subsequent sizes have levels 1; 2; . . . of side

lengths 2
ffiffiffi

3
p
; 4

ffiffiffi

3
p
; . . ..

Take any edge e of a level kþ 1 triangle Tþ from the

triangulation T þðrÞ and let z be its midpoint. The two ends of e

have the form z� 2k3w for w in one of the w directions of the

lattice (see the red line segment in Fig. 16). Since both end

points lie in r1 þ . . .þ rkþ1 þ 2kþ13P, we see that z 2

r1 þ r2 þ . . . þ rk þ 2k3P � r1 þ . . . þ rk þ 2kQ ¼

q1 þ . . .þ qk þ 2kQ and rkþ1 
 2k3w mod 2kþ13P. Let a be in

the a direction at right angles to w and consider the two points

z� 2ka. These are two points of a level kþ 1 triangle of T ðqÞ

and z is its midpoint.

To see this explicitly we take the case where w ¼ w1 and

a ¼ a2 ¼ 2w2 � w1. Then

2k3w� 2ka ¼ 2k
ð3w1 � 2w2 þ w1Þ

¼ 2kþ1ð2w1 � w2Þ 
 0 mod 2kþ1Q:

This shows that

zþ 2ka 2 r1 þ . . .þ rk þ 2k3wþ 2kþ1Q

¼ r1 þ . . .þ rkþ1 þ 2kþ1Q ¼ q1 þ . . .þ qkþ1 þ 2kþ1Q:

See Fig. 16. This proves:

Proposition 5.2. At their midpoints, the edges of level kþ 1

triangles of T þðrÞ both right-bisect and are right-bisected by

edges of level kþ 1 of T ðqÞ.

These midpoints are centers of double hexagon tiles and, as

in all double hexagon tiles, the stripes of the inner and outer

hexagons are at right angles. This applies to triangles of all

levels k ¼ 0; 1; 2; . . .. Since by proposition 4.4 every stripe of a

small hexagon lies at the middle of some edge of some

triangle, we conclude that the nested triangulation T þðrÞ is

directly related to the stripes on the large hexagon tiles,

namely the path created by these stripes forms the triangles of

this triangulation. Thus the triangular tiling produced by the

outer hexagons is indeed the one produced by the nested

triangulation of T þðrÞ. Fig. 17 illustrates what is going on here

and also shows that the edge shifting (involved in truly nesting

the triangles) is properly indicated by the outer hexagon tiles.
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Figure 16
How triangle sides of triangles from T ðqÞ and T þðrÞ right-bisect each
other.



A direct consequence of proposition 5.2 is that generic

(respectively, singular) 3P-nested triangulations give rise to

generic (respectively, singular) Q-nested triangulations:

Proposition 5.3. Let r 2 Q1 and let q be its image in Q0.

Then T ðqÞ is generic if and only if T þðrÞ is generic.

6. From nested triangulations to double hexagon tilings

At this point it is rather clear that given any triangulation T ðqÞ

and any choice of one coset cþ 3P leading to T þðrÞ it ought to

lead to a legal double hexagon tiling. Here are the details. We

will assume that both triangulations are non-singular. This

guarantees that there are no infinite edges, we get proper

triangulations, and they are nested. This nesting can be

geometrically manifested by laterally shifting the edges as

indicated by the nesting. The Voronoi cells of the lattices

(nearest neighbor cells) are hexagons centered, respectively,

on the points of T ðqÞ and T þðrÞ. We know that every hexagon

from T ðqÞ has a triangle edge passing through it and this edge

will be shifted laterally in nesting. This is shown in Fig. 18. The

hexagon is made into a well arrowed hexagon by placing the

pair of parallel arrows in the direction of the shift. The small

hexagons now make a well arrowed and well matched hexagon

tiling.

Now we do the same thing with the triangulation T þðrÞ,

leading to the new hexagonal tiling, again with arrows indi-

cating edge shifting in the nesting (see Fig. 19). This is the

second well arrowed and well matched hexagonal tiling. The

outcome is that we have a tiling of double hexagon tiles which

is non-singular and legal (see Fig. 2).

7. Penrose tilings, Taylor–Socolar tilings, and beyond

By definition, a Penrose tiling is precisely a legal double

hexagon tiling. Taylor–Socolar tilings (T–S tilings) are usually

defined by the T–S tiles shown in Fig. 20 and they are

assembled as regular hexagonal tilings, but under the matching

rules:

RT1 the black lines must join continuously when tiles abut;

RT2 the ends of the diameters of two hexagonal tiles that

are separated by an edge of another tile must be of opposite

colors.

In Fig. 10 we have seen that the diagonals of the inner

hexagons of a double hexagon tiling can be colored, and if we

restrict this coloring to the actual physical area of the inner

hexagons then we have the colorings of Fig. 20. The matching

254 Lee and Moody � Penrose and Taylor–Socolar hexagonal tilings Acta Cryst. (2017). A73, 246–256

research papers

Figure 18
Starting from the pair ðq; rÞ, with r1 
 c mod 3P, hexagons centered at the
lattice points of Q are shown, with those centered on a coset cþ 3P
indicated in yellow. The nesting of the triangulation T ðqÞ arising from q is
indicated.

Figure 19
Continuing from Fig. 18, from r 2 Q1 we obtain a nested triangulation
T
þ
ðrÞ, part of which is shown here.

Figure 17
v; v0 are the ends of an edge e of a triangle Tþ from the nesting
determined by T þðrÞ. At its midpoint z we see the edge u; u0 of a triangle
T from T ðqÞ. The black triangles all come from the triangulation of T ðqÞ,
the largest ones being of level 3. The edge e is maximal, in the sense that it
is not part of an edge of some larger triangle from T þðrÞ. Thus, at its ends,
the stripes of the large hexagons at v and v0 are in the directions of the
other sides of Tþ. The inner hexagons along vv0 are centered at double
hexagon centers and their stripes are all oriented in the same direction,
namely perpendicular to vv0. At the left we have separated out the outer
hexagons that overlay the small hexagons along vv0. We see their
matching arrows and how their stripes align to form the edge vv0 (in
green). The colors (red/blue) of the short diameters of these large
hexagons are determined by (or determine, whichever way one wants to
put it) the color rule that we see in Fig. 10, though note that the stripe of
the large hexagons is perpendicular to that of the small ones, so the right/
left crossing rule is opposite! The fact that the stripe orientation changes
at the end dictates that the edge vv0 is an interior edge of a larger triangle.
The shift indicated by the orientation of the arrows matches this.



of the outer arrows of the double hexagon tiling amounts to

the color rule RT2, so we have in this way one third of a T–S

tiling (Fig. 21). If the double hexagon tiling is legal, then we

know that this partial hexagonal tiling of inner hexagons along

with the corner hexagons completes to a new properly

arrowed hexagonal tiling together with a corresponding

nested triangulation. If we assume that the nested triangula-

tion is non-singular, which is generically the case, then this

tiling-triangulation corresponds to a unique T–S tiling. That is,

the one-third tiling we have completes uniquely to a T–S tiling.

The proof of this is given in Lee & Moody (2013) – each non-

singular nested triangulation corresponds to a unique T–S

tiling and vice versa.

Thus, every non-singular Penrose tiling produces inside it a

non-singular T–S tiling made out of its inner and corner

hexagons. Now let us go in the other direction. If we begin

with a non-singular T–S tiling then it produces a nested

triangulation out of the stripes on each hexagon. Relative to a

fixed coordinate system, this triangulation corresponds to an

element q in the Q-adic completion Q0. In order to obtain a

double hexagon tiling from this, we need to select which

hexagons will be the inner hexagons and which the corner

hexagons for the new tiling. This amounts to choosing one

coset from the Q=3P. Choose one, say, cþ 3P. Then there is a

unique r 2 Q1 that maps q under the natural mapping of Q1 to

Q0 and for which r1 
 c mod 3P. This produces the centers

and the nested triangulation that determines a legal double

hexagon tiling, as we have pointed out in x6.

To reiterate, we see that the nested triangulation of the

large hexagon tiles determines the nested triangulation of the

inner hexagonal tiles. Thus, although we only see the coloring

of one third of an underlying T–S tiling, the entire nesting of

the triangulation arising from the small hexagon tiles is

implicitly known from the nested triangulation of the larger

hexagon tiles: we know q once we know r.

A noteworthy observation comes by comparing Fig. 20 and

Fig. 4: it shows that the distinction between the parity [that is,

the difference between the two types of small hexagon tiles

(respectively, large hexagon tiles)] is the same for the T–S

tiling and the Penrose tiling. Thus the parity distribution of a

Penrose tiling is the same as the parity distribution of one

coset modulo 3P of the T–S tiles.

Although it is shown in Baake et al. (2012) that the two

tiling spaces generated by T–S tilings and Penrose tilings

define distinct MLD classes, it is clear by now that the two

types of tilings are intimately related, and indeed, modulo the

choice of a coset, there is a mutual derivability. We can

summarize some key points as follows:

Theorem 7.1. (i) Taylor–Socolar tilings and Penrose tilings

are aperiodic.

(ii) Given a non-singular Taylor–Socolar tiling on Q, one

can build, in a canonical way, three different non-singular

Penrose tilings, one for each of the three cosets cþ 3P of

Q mod 3P. At any point of cþ 3P one knows exactly what

type of Penrose tile should be put in that position, and this

uses only local information of the T–S tiling.

(iii) Given a non-singular Penrose tiling on some coset

cþ 3P, there is a unique nested triangulation on Q formed by

the decoration of inner hexagons and corner hexagons of

Penrose tiles. This nested triangulation gives a unique non-

singular T–S tiling. Note that, unlike the situation in (ii), this

construction is not local.

The process of producing double hexagon tiles from a pair

ðq, rÞ suggests that we might do it again, choosing a coset
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Figure 22
The four types of triple (or 3-tiered) hexagons.

Figure 20
The two prototiles for the Taylor–Socolar tilings.

Figure 21
A small patch of double hexagon tiles with the new decoration shown on
the right of Fig. 4.



dþ 3Q with d 
 c mod 3P and then determining s 2 Q2. This

triple ðq; r; sÞ leads to triple hexagon tiles and a triple hexagon

tiling. The rules for admissibility follow the same principles as

we have used above. The largest hexagonal tiles have middle-

sized hexagonal tiles at their centers, and create middle-sized

corner tiles around them. The requirement is well arrowing

throughout. This yields a well arrowed hexagonal tiling of

middle-sized tiles. In the same way, we can create from this a

hexagonal tiling of small tiles, where again we require well

arrowing throughout.

These triple tiles come in four types and produce a new type

of hexagonal tiling (Fig. 22). There is no reason to stop there.

This new hierarchical situation is illustrated in the commu-

tative diagram (3):

Q0 : Q=Q  � Q=2Q  � Q=4Q  � Q=8Q  	 	 	

" " " " "

Q1 : Q=3P  � Q=6P  � Q=12P  � Q=24P  �	 	 	

" " " " "

Q2 : Q=3Q  � Q=6Q  � Q=12Q  � Q=24Q  �	 	 	

" " " " "

Q3 : Q=9P  � Q=18P  � Q=36P  � Q=72P  �	 	 	

" " " " "

..

. ..
. ..

. ..
. ..

.

ð3Þ

More generally there are ‘n-tuple hexagons’, or to have a

better sounding name, n-tiered hexagons, each of which

consists of n hexagons stacked within each other, which tile

the plane according to the nth line of (3). There are two

choices for the orientation of a hexagon at each stage of

layering, but after taking into account rotations, this gives 2n�1

types of these tiered tiles. Non-singularity (respectively,

singularity) is a property common to all levels.

8. Outlook

The purpose of this paper has been to clarify the unity that

exists between the Taylor–Socolar tilings and the Penrose

hexagonal tilings – a unity that can be expressed both

geometrically and algebraically in terms of double hexagon

tiles. Each non-singular legal double hexagon tiling encom-

passes both a Penrose tiling and a T–S tiling, and this pairing

can be interpreted algebraically in terms of (2). Each of the

two hexagonal tilings leads to a nested triangulation, and these

two are bound together by the simple rule that triangle edges

of each right-bisect edges of the other.

There are two issues that arise here that we have not

discussed, but plan to pursue in future work. The first is the

nature of singularities in these tilings from both the geometric

and algebraic perspectives, and their detailed manifestation in

the corresponding tiling hulls. The second is the study of the

n-tiered hexagonal tilings. The algebraic setting which uses

the first n rows of the commutative diagram (3) suggests that

the n-tiered hexagons lead to aperiodic tilings in which there

are potentially 2n�1 types of tiles. Thus there is a hierarchy of

aperiodic hexagonal tilings, and their corresponding tiling

hulls, about which we know very little.
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