Exhaustive symmetry mode searches: phase transitions in pyrochlore $\mathrm{Bi}_{2} \mathrm{Sn}_{2} \mathrm{O}_{7}$
James William Lewis ${ }^{1}$, Julia Payne ${ }^{1}$, Ivana Evans ${ }^{1}$, Harold Stokes ${ }^{2}$, Branton Campbell ${ }^{2}$, John Evans ${ }^{1}$
${ }^{1}$ Department Of Chemistry, Durham University, Durham, United Kingdom, ${ }^{2}$ Department of Physics and Astronomy, Brigham Young University, Provo, United States
E-mail: j.w.lewis@durham.ac.uk
Bi 2 Sn 2 O pyrochlore has been shown to undergo phase transitions from a cubic parent γ phase to β and a phases on cooling. Until recently, the only reliable structural model for the low temperature phases has been an a phase model reported by Evans et al. [1]. This was derived by testing a limited number of candidate structures based on experimental information from the literature and assuming group-subgroup relationships.

We have now developed an exhaustive approach for searching all possible subgroups between a parent structure (here the Y phase) and a child structure with sufficient degrees of freedom to explain all the peaks seen in powder diffraction data from any form of the material (here a P1 structure with a cell parameters of root2ap \times root2ap $\times 2 a p$, where ap is the cell parameter of the parent cubic γ phase). Our method uses ISODISTORT [2] to produce a 547 -membered subgroup tree and Topas Academic to automatically test each of the candidate structures. Using this approach we have determined the first definitive model for the β-phase (Aba2, $a=7.571833(8) \AA, b=21.41262(2) \AA, c=15.132459(14) \AA$) and a much simpler model than previously reported for the a-phase (Cc, $a=13.15493(6) \AA, b=7.54118(4) \AA, c=15.07672(7) \AA, \beta=$ $\left.125.0120(3)^{\circ}\right)$ [3].

By using a symmetry mode basis we can describe the principal distortions in each phase in terms of coupled rotations of the cristobalite-like $\mathrm{Bi}^{\prime} \mathrm{O}^{\prime}$ framework that allow Bi to adopt lone-pair cation preferred low-symmetry sites. In the β-phase we find that Bi is displaced towards an edge of its O 6 hexagonal coordination environment whereas in the a-phase the displacement is towards an apex.

The use of symmetry modes enables an exhaustive approach to symmetry determination in a modest time period (~ 48 hours on an $i 7,3.4 \mathrm{GHz}$ desktop PC in this work) that is applicable across a range of structure determination problems where only powder diffraction data is available.
[1] Evans, I. R., Howard, J. A. K. and Evans, J. S. O. J. Mater. Chem. 2003, 13, 2098
[2] Campbell, B. J.; Stokes, H. T.; Tanner, D. E.; Hatch, D. M. Journal of Applied Crystallography 2006, 39, 607
[3] Lewis, J.W.., Payne J.L., Evans I.R., Stokes H.T., Campbell B.J., and Evans J.S.O.. Journal of the American Chemical Society 2016, 138, 25, 8031-8042.
Keywords: Bi2Sn207, phase-transition, symmetry-mode

