Poster Presentation

MS115.P02

Polymorphism involving multiple molecules in asymmetric unit of trifluoromethylated phenylbenzamide
Subhrajyoti Bhandary ${ }^{1}$
${ }^{1}$ Indian Institute Of Science Education Bhopal, Bhopal, India E-mail: subhb@iiserb.ac.in

Compounds which crystallized with multiple number of molecules in the asymmetric unit ($Z^{\prime}>1$) have always been of interest in the crystallographic community [1]. However, the phase transition from a stable lower Z^{\prime} polymorphic form to metastable higher Z^{\prime} form is an important contribution towards our understanding of the processes which influence the formation of crystals with higher values of Z^{\prime} [2]. In the current study, concomitant dimorphism has been observed from a solution phase crystallization of the compound 3-(trifluoromethyl)- N -[2-(trifluoromethyl)phenyl]benzamide [3]. The dimorphs, namely, form I (triclinic, $\mathrm{P}-1, \mathrm{Z}^{\prime}=2$) and form II (monoclinic, $\mathrm{Cc}, \mathrm{Z}^{\prime}=4$) exhibit nearly the same lattice energy as calculated from the atom-atom method in the CLP module and similarity in crystal packing involving mainly strong N $\mathrm{H} \bullet \bullet \mathrm{O}=\mathrm{C}$ and weak $\mathrm{C}-\mathrm{H} \cdot \bullet \cdot \mathrm{O}=\mathrm{C}$ hydrogen bonds. The Xpac analysis shows the presence of 2D isostructurality in between the two polymorphs while the difference in crystal packing arises from the presence of weak $\mathrm{C}-\mathrm{H} \bullet \bullet \mathrm{F}-\mathrm{C}(\mathrm{sp} 3)$ hydrogen bond and $\mathrm{C}(\mathrm{sp} 3)-\mathrm{F} \bullet \bullet \mathrm{F}-\mathrm{C}(\mathrm{sp} 3)$ interactions. Thermal studies [Fig. 1] revealed the rare occurrence of simultaneous melting and solid-to-solid phase transition from lower $Z^{\prime}>1$ structure (form I) to higher $Z^{\prime}>1$ structure (form II).
[1] (a) Desiraju, G. R. (2007). CrystEngComm, 9, 91-92. (b) Bond, A. D. (2008). CrystEngComm, 10, 411-415. (c) http://zprime.co.uk/ (d) Steed, K. M. \& Steed, J. W. (2015). Chem. Rev. 115, 2895-2933.
[2] (a) Das, D. et al. (2006). Chem. Commun. pp. 555-557. (b) Long, S. et al. (2011). Cryst.Growth Des. 11, 414-421. [3] Panini, P. et al. (2016). Cryst.Growth Des. 16, 2561-2572.

Keywords: Concomitant polymorphism, Crystal structures with Z'>1, Isostructurality and Phase transition.

