MS040.P02

Dilithium (citrate) crystals and their relatives

James Albert Kaduk ${ }^{1}$, Andrew Cigler ${ }^{1}$
${ }^{1}$ Chemistry, North Central College, Naperville, United States
E-mail: kaduk@polycrystallography.com
The new compounds LiMHC6H5O7 ($\mathrm{M}=\mathrm{Li}, \mathrm{Na}, \mathrm{K}, \mathrm{Rb}$) have been prepared from the metal carbonates and citric acid in solution. The crystal structures have been solved and refined using laboratory (Mo Kalpha) X-ray powder diffraction data, and optimized using density functional techniques. The compounds crystallize in triclinic space group $\mathrm{P}-1$, and are nearly isostructural. The structure is lamellar, with the layers in the ab plane. The boundaries of the layers consist of hydrophobic methylene groups and very strong intermolecular O-H...O hydrogen bonds between un- ionized terminal carboxylic acid and ionized terminal carboxylate groups. The O...O distances range from $2.666 \AA$ for $M=L i$ to $2.465 \AA$ for $M=R b$; the graph set is $R 1,1(8)$ and the ring includes M. The hydroxy group acts as a hydrogen bond donor, forming R1,1(6) hydrogen bonds; the ring includes the Li. The Li-O bonds exhibit significant covalent character (as indicated by the Mulliken overlap populations), while the heavier M-O bonds are ionic. The Li are 4, 5, or 6-coordinate, while the coordination numbers of the larger cations are higher: 8 for Na and 9 for K and Rb . Trends in chelation will also be discussed. The citrate occurs in the trans, trans conformation, one of two low- energy conformations of an isolated citrate anion. In the series NaMHC6H5O7 (M $=K, R b, C s)$ the $M=K$ and $R b$ compounds are isostructural ($P-1$), and contain chains of metal-oxygen polyhedra. The $M=$ Cs compound is monoclinic (I2), and is also lamellar. The $\mathrm{COOH} . . \mathrm{O} 2 \mathrm{C}$ hydrogen bonds in these compounds are even shorter, with O...O distances ranging from 2.426 to as low as $2.347 \AA$, making these some of the shortest hydrogen bonds observed.
Keywords: citrate, powder diffraction, hydrogen bonding

