Poster Presentation

MS047.P15

Structures of cis-Dioxomolybdenum(VI) with chiral tetradentate tripodal ligands

Sabari Ghosh ${ }^{1}$, SATHISH KUMAR KURAPATI ${ }^{1}$, SAMUDRANIL PAL ${ }^{1}$
${ }^{1}$ School Of Chemistry, University Of Hyderabad, Hyderabad, India
E-mail: sabari.ghosh2@gmail.com

Racemic complexes of the general formula cis-[MoO2(bzacLn)] (1-3) were produced in the reactions of [MoO2(bzac)2] (bzac - = benzoylacetonate) with the potentially N2O-donor 5,5-membered fused chelate rings forming Schiff bases 4/5-R-2-(2pyridylaldimine) phenols (HLn ; $\mathrm{n}=1-3$ for $\mathrm{R}=\mathrm{H}, 4-\mathrm{Me}$ and $4-\mathrm{Cl}$, respectively).[1] Here (bzacLn)2- represents the chiral N 2 O 2 donor tripodal ligand system in 1-3, which was formed via Mannich-type addition of benzoylacetonate methine to the azomethine of the N2O-donor Schiff base (HLn). Analogous complexes with (acacLn)2- had also been reported by our group.[2] The complexes crystallize as $1,2 \bullet \mathrm{MeOH}$ and $3 \bullet \mathrm{MeOH}$ from the corresponding methanol solutions. X-ray structures revealed that a distorted octahedral N2O4 coordination environment around the molybdenum atom is formed by the pyridine- N , the secondary amine- N , the enolate- O and the phenolate- O donor (bzacLn)2- and two mutually cis oriented oxo groups in each of $1-3$. The (bzacLn)2- unit has a chiral tripodal-like motif with three different coordinating arms - the N -donor 2 -pyridyl arm, the enolate-O donor 1-phenyl-1-one-2-butenyl-3-olate arm, and the bidentate secondary amine- N and the phenolate-O donor aminophenolate arm. Various characterization techniques such as $I R$, UV-Vis and NMR measurements were used to confirm the molecular structures of $1-3$. The structure of (bzacLn)2- clearly indicates its formation via Mannich-type addition of the central $=\mathrm{CH}-$ of (bzac)- across the azomethine bond of (Ln)-. To the best of our knowledge, there is no such report on cis-\{ MoO 2$\} 2+$ assisted ligand transformation of the same type except for our earlier observation.[2] The molecules of 1-3 are chiral due to the presence of two chiral centers, the pivotal carbon atom and the metal coordinated secondary amine nitrogen atom in (bzacLn)2-. In each of $1-3$, the $\mathrm{N}-\mathrm{H} \bullet \bullet \bullet \mathrm{O}$ hydrogen bond assisted selfassembly patterns are not identical. The enantiomers of unsolvated 1 form parallel inversion symmetry related onedimensional chain-like structures, whereas for each of $2 \bullet \mathrm{MeOH}$ and $3 \bullet \mathrm{MeOH}$, the enantiomers form discrete centrosymmetric dimers via a pair of reciprocal $\mathrm{N}-\mathrm{H} \bullet \bullet \bullet \mathrm{O}$ interactions.
[1] Ghosh, S., Kurapati, S. K. and Pal S. (2017). Polyhedron. 125, 26-33.
[2] Kurapati, S. K. and Pal S. (2015). Dalton Trans. 44, 2401-2408.

Keywords: tripodal, Mannich-type addition, benzoylacetonate

