Microsymposium

Phase transitions and crystal structures of η'' -Cu_(3+x)Si and η''' -Cu_(3+x)Si

<u>Cinthia Antunes Correa^{1,2}</u>, Morgane Poupon¹, Olivier Pérez², Robert Král¹, Petra Zemenová¹, Jérôme Lecourt², Jaromír Kopeček¹, Petr Brázda¹, Mariana Klementová¹, Lukáš Palatinus¹

¹Department Of Structure Analysis - Institute Of Physics Of The Czech Academy Of, Prague, Czech Republic, ²Department of

Physics of Materials, Charles University in Prague, Ke Karlovu 5, Prague 2, Czechia

E-mail: cinthiacac@gmail.com

The binary phase diagram of Cu-Si [1] was extensively studied and is considered well established. Three phases are reported in the Cu(3+x)Si phase-field: η'' below 470°C, η' between 470°C and 560°C, and η up to 859°C, where it melts congruently. The crystal structure of η' was obtained by Palatinus et al. [2], but so far no conclusive structure model for any of the other phases was published. We investigated samples of Cu(3+x)Si with nominal composition 74%, 76% and 78% copper by temperature dependent powder x-ray diffraction, differential scanning calorimetry, and in-situ high-temperature single crystal x-ray diffraction, within the temperature range of 30°C to 750°C. The temperature dependent powder x-ray diffraction revealed a complex phase diagram, where six distinct phases could be identified within the Cu(3+x)Si phase-field: in order of increasing temperature, η'' , η' , η' , η' , η^2 , η^2 and η^1 . Single crystal x-ray diffraction data enabled us to elucidate the crystal structures of η''' and η'' . Both diffraction patterns could be indexed in a trigonal unit cell with a=4.0700(3) Å, c=14.685(2) Å and with modulation vectors $q1=(a,\beta,1/3)$ and $q2=(-a-\beta,a,1/3)$. The solution could be performed in (3+2)D superspace, but the extreme modulation impeded the refinement in the superspace. Hence, a supercell approximation was used for both structure refinements. The structures are incommensurately modulated. $\eta^{\prime\prime\prime}$ has a=0.2783(10), β =0.2068(10), which allowed to use a 14x14x3 supercell, space group P-3, and η'' , having a = β =0.2509(10), could be described in a 4x4x3 supercell, space group P-31c. Powder diffraction patterns were used to characterize the phase transitions and most of the subsequent phases. The transition from η''' to η'' is characterized by a change of the components of the modulation vectors from $(\alpha,\beta,1/3)$ to $(\alpha,\alpha,1/3)$. During the next transition, from η'' to η' , the c axis halves, maintaining the components of the modulation vector (a,a,1/3). $\eta 3$ is most likely a (3+2)D structure similar to the previous ones, but so far the diffraction pattern could not be completely indexed. n2 appears when the modulation vector changes to $(0,0,\gamma)$, and $\eta 1$ becomes a regular crystal structure without modulation vectors. One unusual behavior present in the transitions is the shrinking of the unit cell parameters upon the transition to the higher temperature phases.

[1] Olesinski, R. W., Abbaschian, G. J., (1986). Bulletin of Alloy Phase Diagrams 7(2).

[2] Palatinus, L. et al. (2011). Inorg. Chem. 50, 3743-3751.

Keywords: copper silicide, incommensurately modulated structure, phase transition