Poster Presentation

MS074.P05

Role of hydrogen bonding in pseudocapacitance of covalent organic frameworks

Suman Chandra ${ }^{1}$, Rahul Banerjee ${ }^{1}$
${ }^{1}$ National Chemical Laboratory, Pune, India
E-mail: sumanchandra4u@gmail.com

Two-dimensional redox-active covalent organic frameworks (COFs) are ideal materials for energy storage applications due to their high surface area, extended n conjugated structure, tunable pore size and adjustable functionalities.[1-3] Herein, we report the synthesis and supercapacitor application of two redox active COFs [TpPa-(OH) 2 and $\mathrm{TpBD}-(\mathrm{OH}) 2$] along with the role of their redox active functional groups for the enrichment of specific capacitance. 3 Of these COFs, TpPa (OH)2 exhibited the highest specific capacitance of $416 \mathrm{Fg}-1$ at $0.5 \mathrm{~A} \mathrm{~g}-1$ current density in three electrode configuration while the highest specific capacitance was $214 \mathrm{Fg}-1$ at $0.2 \mathrm{~A} \mathrm{g-1} \mathrm{current} \mathrm{density} \mathrm{in} \mathrm{two} \mathrm{electrode} \mathrm{configuration}$. was due to emergence of excellent pseudocapacitance by virtue of precise molecular level control over redox functionalities present in the COF backbone. This COF also demonstrated 66% capacitance retention after 10000 cycles along with 43% accessibility of the redox-active hydroquinone (H2Q) moieties in three electrode configuration while the capacitance retention was 88% after 10000 cycles in two electrode configuration. Exceptionally high specific capacitance of TpPa-(OH)2 was due to the reversible proton-coupled electron transfer ($2 \mathrm{H}+/ 2 \mathrm{e}-$) of hydroquinone/benzoquinone ($\mathrm{H} 2 \mathrm{Q} / \mathrm{Q}$) moieties wherein H 2 Q and Q had comparable chemical stabilities during redox cycling that originated from H -bonding, which was supported by calculated structures.
[1] DeBlase, C. R. et al. (2013). J. Am. Chem. Soc. 135, 16821-16824.
[2] DeBlase, C. R. et al. (2015). ACS Nano. 9, 3178-3183.
[3] Chandra, S. et al. (2017). Chem. Mater. 5, doi:10.1021/acs.chemmater.6b04178.

Keywords: H -Bonding, Pseudocapacitance , COF

