Lundemba Singaa, Bibelayi Dikima, Juliette Pradonb*, Anthony M. Reilly, Muswema L. Jeremiea, Colin R. Groom, and Zéphyrin G. Yava*
a Département de Chimie, Université de Kinshasa, B.P.190 Kinshasa XI, République Démocratique du Congo. E-mail: albertlundemba@gmail.com. Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK.

Abstract

Selenium has the possibility to form some non-covalent interactions, such as hydrogen and sigma-hole bondings like sulphur. A covalently-bonded selenium atom may have a region of significantly-positive electrostatic potential on its outer side, along the extension of a covalent bond. This is due to the electron-deficient outer lobe of a half-filled p-bonding orbital, so called "σ-hole." The investigation with CSD data confirm that sigma hole bonding that involves Se exist in many structures, but quantum mechanics (QM) calculations show that sigma-hole involving Se is as stronger as the H-bonding, and is strictly oriented along sigma bond. In the same chemical environment, when substituted, the stability of the complex is in the following order: $F > CN > Cl > Br > C=C$, when ab-initio methods are used, and $F > Cl > CN > Br > C=C$ following DFT methods, when NH3 and CH3OH3 are employed as acceptors. However, with HCN as acceptor the stability sequence is in the following order: $CN > F > Cl > Br$.

Keywords: Sigma -hole bonding, selenium