Poster Presentation

Electrochromic tungsten molybdenum oxide: synthesis with phase and morphology control

<u>Shalini Tripathi</u>¹, Kanad Ghosh¹, Ahin Roy², Abhishek Singh¹, N Ravishankar¹

¹Materials Research Centre, Indian Institute Of Science, Bangalore, India, ²Department of Materials Science and Engineering,

Kyushu University, Fukuoka, Japan m

E-mail:	s.tripa	thi.iisc	@gmai	l.cor
---------	---------	----------	-------	-------

Presence of a myriad of WO ₃ phases demands a stringent control over the microstructure and phase to attain the desired				
tailoring of the properties. Among several applications, such as electrochromicity, photocatalysis and gas sensing, the electrochromic behaviour of this material has gained significant attention. Here, we thoroughly investigate the growth				
mechanism of the different WO ₃ phases under solvothermal reaction conditions, along with their electrochromic behaviour.				
Under the same synthetic conditions, we explore the effect of Mo-doping into the WO_3 lattice, leading to the formation of				
new mixed oxide phases. Experiments involving the growth mechanism of different phases for WO_3 and W_x Mo_{1-x} O_3				
show that WO ₃ can form two different phases, i.e. hexagonal and orthorhombic, directed by the presence of oxalic acid in				
the reaction medium. Interestingly, when oxalic acid is used as a capping reagent, a plate-like 2-D morphology of the				
orthorhombic WO_3 phase is obtained, whereas absence of capping agent yields to a 1-D rod-like morphology				
corresponding to a hexagonal phase of WO_3 . DFT- based calculation of oxalate binding strength on different WO_3				
surfaces clearly shows that binding energy of the oxalate is higher on the orthorhombic $\{002\}$ surface than on hexagonal $\{11-20\}$ surface. Moreover, our experiments show that when a Mo precursor is introduced in the same reaction medium,				
formation of a 2-D plate-like morphology was observed, but the structure is closely related to the hexagonal WO_3 phase.				
STEM-EDS profiling of the elemental composition shows that the flakes have a $W_{0.5}$ $M_{0.5}$ O_3 composition. In terms of				
electronic properties, the orthorhombic WO_3 shows significant presence of reduced W^{5+} species, indicating a difference				
in the reducibility. All these factors, viz. phase, morphology and electronic property affect the electrochromic efficiency of the				
material. In this spirit, we explored the intercalation kinetics of H^+ in the two phases of WO_3 . Our electrochromicity				
experiments show that the hexagonal phase has a faster kinetics of H^+ diffusion. This trend is also supported by ab initio				
calculations, which shows a higher intercalation energy in the orthorhombic phase compared to that in hexagonal one, indicating towards a slower proton intercalation. Electrochemically measured diffusion coefficient values also reinforce this observation. We have further investigated the electrochromic property of the mixed oxide phase, illustrating the effect of Mo				
incorporation into the WO ₃ lattice.				
[1] Figlarz, M., (1989), Prog. Solid St. Chem., 19, 1-46. [2] Salje, E. et. al., (1978), J. Solid State Chem., 24, 239-250.				

Keywords: <u>electrochromicity, mixed oxide phase</u>, W_x Mo_{1-x} 03