Effect of boron addition on phase transformations in Co-Re-Ta-C alloys

Premysl Beran¹, Debashis Mukherji², Pavel Strunz¹, Ralph Gilles³, Joachim Roesler²

¹Nuclear Physics Institute CAS, Rez Near Prague, Czech Republic, ²Technische Universität Braunschweig, Institut für Werkstoffe, Braunschweig, Germany, ³Technische Universität München, Heinz Maier-Leibnitz Zentrum (MLZ), Garching, Germany
E-mail: pberan@ujf.cas.cz

There is a need to develop alloys for future gas turbines to enable the increase of gas entry temperatures above 1500 °C and improve their efficiency. Co-based alloys with addition of refractory element Re are promising candidates since they have the required high melting point as well as high strength [1].

Co-Re-based alloys are precipitation hardened by tantalum carbides. The TaC phase is a strongly nonstoichiometric interstitial compound which exists over a wide composition range in the binary Ta-C system. Their stability at high temperatures (>1200°C) in Co-Re alloys has been previously demonstrated [2].

To improve ductility of Co-Re-based polycrystalline alloys, it is necessary to add boron [3]. However, the boron addition dramatically influences the allotropic transformation temperature of the Co matrix (hcp ↔ fcc) and the stability of the matrix, particularly in alloys without Cr additions.

To understand the structural changes and phase stability, we used in-situ neutron powder diffraction technique. In the present study the Co matrix transformation temperature and changes in the fine TaC dispersion were studied in alloys containing 0.1 and 0.4 at. % boron. Two different heat treatment procedures up to 1500°C were used in the in-situ cycles. Moreover, measurement on consecutive second cycle were carried out to study the metastable fcc Co phase. The results are compared with alloys without boron addition and discussed.


Keywords: CoRe alloys, neutron diffraction, phase transformation