MS122.P05

Poster Presentation

Effect of boron addition on phase transformations in Co-Re-Ta-C alloys

Premysl Beran¹, Debashis Mukherji², Pavel Strunz¹, Ralph Gilles³, Joachim Roesler²

¹Nuclear Physics Institute CAS, Rez Near Prague, Czech Republic, ²Technische Universität Braunschweig, Institut fur Werkstoffe,

Braunschweig, Germany, ³Technische Universität München, Heinz Maier-Leibnitz Zentrum (MLZ), Garching, Germany

E-mail: pberan@ujf.cas.cz

There is a need to develop alloys for future gas turbines to enable the increase of gas entry temperatures above 1500 °C and improve their efficiency. Co-based alloys with addition of refractory element Re are promising candidates since they have the required high melting point as well as high strength [1].

Co-Re-based alloys are precipitation hardened by tantalum carbides. The TaC phase is a strongly nonstoichiometric interstitial compound which exists over a wide composition range in the binary Ta-C system. Their stability at high temperatures (>1200°C) in Co-Re alloys has been previously demonstrated [2].

To improve ductility of Co-Re-based polycrystalline alloys, it is necessary to add boron [3]. However, the boron addition dramatically influences the allotropic transformation temperature of the Co matrix (hcp \leftrightarrow fcc) and the stability of the matrix, particularly in alloys without Cr additions.

To understand the structural changes and phase stability, we used in-situ neutron powder diffraction technique. In the present study the Co matrix transformation temperature and changes in the fine TaC dispersion were studied in alloys containing 0.1 and 0.4 at. % boron. Two different heat treatment procedures up to 1500°C were used in the in-situ cycles. Moreover, measurement on consecutive second cycle were carried out to study the metastable fcc Co phase. The results are compared with alloys without boron addition and discussed.

[1] Rosler, J. et al. (2007). Adv. Eng. Mater. 9, 876-881.

[2] Beran, P. et al. (2016). Met. Mater. Int. 22, 562-571.

[3] Mukherji, D. et al. (2012). Scripta Materialia 66, 60–63.

Keywords: CoRe alloys, neutron diffraction, phase transformation