New guest accessible space under gas pressure

Vincent Joseph Smith

Department Of Chemistry, Rhodes University, Grahamstown, South Africa
E-mail: v.smith@ru.ac.za

A two-dimensional (2-D) coordination polymer \{[Zn(L)4]-DMF-H2O\}_n, (1), prepared by the reaction of 4-(1H-benzo[d]imidazol-1-yl)benzoic acid with Zn(NO3)2-4H2O under solvothermal conditions, can adapt its structure during supercritical carbon dioxide (CO2) guest-exchange and CO2 sorption. The 2-D layers of the coordination polymer are associated by weak interactions that enable the framework to undergo guest-induced expansion and contraction. At high pressure, additional space is created between adjacent layers resulting in a significant increase in the CO2 sorption capacity (Figure 1). Moreover, the structural changes and gas uptake by the host occur preferentially for CO2 at 25 °C while nitrogen (N2) and methane (CH4) are not adsorbed under the same conditions. Pressure differential scanning calorimetry (PDSC) and in situ single-crystal X-ray diffraction (SCD) experiments under gas loading were carried out to obtain insight into the dynamic behaviour of the framework.


Keywords: Gas pressure, Coordination polymer, Soft-porosity