Dy₂ScNbO₇: an unconventional spin ice?

Authors: Megan Rutherford, Cole Mauws, Sarah Haravifard, Casey Marjerrison, Graeme Luke, James Beare, Dave Herbert, Jamie Ritch, Chris Wiebe

The University of Winnipeg

Using standard solid state methods, Dy_2ScNbO_7 , a member of a new series of pyrochlore oxides was synthesized. While the A-site is occupied by the magnetic Dy^{3+} cation, the B site is split into a mixture of disordered Sc^{3+} and Nb^{5+} cations. It appears that Dy_2ScNbO_7 has low temperature spin ice state that is similar to the titanate analogue, $Dy_2Ti_2O_7$. Despite its similarities, Dy_2ScNbO_7 exhibits much faster spin dynamics than any other dysprosium spin ice candidate. Attempts to grow single crystals of Dy_2ScNbO_7 have been successful using the floating zone image furnace. Recent characterization results will be presented.