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During and after large meteor impacts, high-pressure mineral phases are often found to have 
nucleated [1, 2]. These phases are used to identify the pressure and temperature conditions reached 
during impacts [3, 4]. The pressures and temperatures reached can suggest properties of the 
impactor [2, 5-8]. However, the effects of kinetics and strain-rate on the nucleation of these high-
pressure phases are relatively unconstrained [5]. We completed rapid compression and 
decompression laser-heated membrane diamond anvil cell (mDAC) experiments with in-situ X-
ray diffraction [9]. We studied olivine and plagioclase in order to examine phase formation and 
kinetics at high pressure and temperature. The compression and decompression rates were between 
0.05-0.9 GPa/s up to pressures around 50 GPa. The strain rate is around 1000 times lower than a 
natural event. The strain rates allow us to observe overpressure effects and transformation 
mechanisms in detail. These experiments have allowed us to identify some of the complex 
interactions, including thermodynamics, kinetics, and deformation processes, that likely play a role 
in natural events and are previously unexplored. 
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