Sulfur Dioxide-Halide Ion Complexes: A Crystallographic Investigation of Bonding

<u>Katherine N. Robertson</u>, Michael A. Land, Luke J. Murphy, Kirstin A. Doyle and Jason A.C. Clyburne

The Atlantic Center for Green Chemistry, Department of Chemistry, Saint Mary's University, Halifax NS, B3H 3C3

Sulfur dioxide (SO₂) is a major air pollutant, and SO₂ emissions result in both acid rain and atmospheric particulates. Little attention has been paid to a relatively simple method for reversibly binding SO₂, a method which could potentially be used to remove it from waste streams. There is only one example of an "[SO₂Cl]" anion currently identified in the Cambridge Structural Database (April 2018). The number of "[SO₂...Cl]⁻" adducts described is also few (less than 10) and the criteria for bonding in such adducts has not been well described. The reaction of SO₂ gas and halide salts was thus used to generate a series of halosulfite (SO₂X⁻, X = Cl, Br, I) compounds. The structures of the solid compounds obtained, three tetraphenylphosphonium complexes, [PPh₄][SO₂X], and [IMesH][SO₂Cl] (IMesH = 1,3-*bis*(2,4,6-trimethylphenyl)-imidazolium), were determined using X-ray crystallography. Preliminary investigations suggest that these same products can also be formed *via* solvent-free, solid-gas reactions. It was found that the complexes readily released SO₂ when heated, suggesting that they should be candidates for SO₂ capture.