Crystal structure prediction in novel nitrides: The roles of metastability and disorder

Stephan Lany

National Renewable Energy Laboratory, Golden, CO 80401

Compared to oxides, nitrides have similar or higher cohesive energy, bond strength, and hardness. Yet, nitrides do not form minerals, and comprise a much smaller space of known compounds and crystal structures when compared to oxides. This paradox is due to the exceptionally large binding energy of the N₂ molecule and the resulting relative thermochemical instability of nitrides. On the other hand, nitrides have a higher propensity to form metastable structures [1]. As a part of a broader nitrides discovery effort, we have predicted the crystal structures of the previously unknown nitrides Sn₂N₂, Ti₃N₄ [2] and the Zn-Mo ternaries Zn₃MoN₄ and ZnMoN₂ [3], using an first principles sampling approach based on kinetically limited minimization [3]. In each of these cases, the observed crystal structures match with computational predictions only after taking into account the role of disorder. The matching structures lie up to 150 meV/at above the predicted ground state. This study highlights the need to incorporate metastability and disorder in computational crystallography.

[1] W. Sun at al., Sci. Adv. 2, e1600225 (2016).

[2] V.S. Bhadram et al., Phys. Rev. Mater. 2, 011602(R) (2018).

[3] E. Arca et al., J. Am. Chem. Soc. 140, 4293 (2018).