MS10-P04 ## Rotational dynamics of methyl ammonium ions and hydrogen-bonding in orthorhombic CH₃NH₃PbI_{2.94}Cl_{0.06} by means of neutron scattering and IR investigations Götz Schuck¹, Monika Koch-Müller², Ilias Efthimiopoulos², Frederike Lehmann ¹, Susan Schorr¹ - 1. Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin, Germany) - 2. Deutsches GeoForschungsZentrum GFZ, Potsdam, Germany ## email: goetz.schuck@helmholtz-berlin.de Perovskites with ABX_3 -structure show huge possibilities for element substitution on the A-, B- and X-sites, resulting in a broad variety of physical properties. One field of interest is chlorine-substituted methyl ammonium lead triiodide in which A is the organic unit $[CH_3NH_3]^+ = MA$, $B = Pb^{2+}$ and $X = I_{3-v}CI_v$. We chose to substitute 2 % of the iodine in MAPbI₃ with chlorine since recent investigations with synchrotron XRD showed that only a narrow range of up to 2.5 % of the iodine in MAPbI₃ can be substituted with chlorine. At the same time, only up to 1 % of the iodine in MAPbCl₃ can be substituted, meaning there is a large miscibility gap. [1] The aim of the quasi-elastic neutron scattering (QENS) investigations presented here is to understand the interrelationship of the static and the dynamic structure of MAPbX₃ by comparing the temperature-dependent methyl ammonium rotational dynamics of MAPbI₃, MAPbI_{2.94}Cl_{0.06} and MAPbCl₃. Combining the QENS results with the analysis of temperature-dependent IR vibrational spectra of MAPbI₃, MAPbI_{2.94}Cl_{0.06} and MAPbCl₃ helps us understand the influence of the rotational dynamics of the methyl ammonium cation on the hydrogen-bonding layers in the orthorhombic low temperature phase. Recently, the presence of layers with X...H-N hydrogen-bonds in the orthorhombic phase of MAPbX₃ was discussed to explain the drastic changes of MA IR vibrational modes across the tetragonal-orthorhombic phase transition (Fig. 1). The transformation of the 2-dimensional orthorhombic hydrogen-bond layers into a more 3-dimensional arrangement in the tetragonal phase is an important feature, providing deeper insight into the mechanisms that lead to a free-rotating MA molecule in the inorganic host structure. [2] In recent QENS investigations on MAPbI₃ [3], two quasi-elastic components were identified in the tetragonal (161.5 K < T < 327 K) and cubic (T > 327 K) phase. It was interpreted that, in the cubic and tetragonal phases, the MA ion exhibits four-fold rotational symmetry perpendicular to the C-N axis (C_4) along with three-fold rotation parallel to the C-N axis (C_3), while only C_3 rotation was present in the orthorhombic Pnma phase (T < 161.5 K). [3] Here, we reinvestigate the suggested jump-models for MAPbI₃ and show the validity of the proposed QENS interpretation for MAPbI_{2.94}Cl_{0.06} and MAPbCl₃. ## References: - [1] Franz et al., submitted to Acta Crystallogr. B, 2018 - [2] Schuck et al., J. Phys. Chem. C, 2018, 122, 5227 - [3] Li et al., Nature Communications 2017, 8, 16086 **Keywords: Hybrid Perovskite, Quasielastic Neutron Scattering, Hydrogen-Bonding**