sertions. This is mainly seen in the difference between *sad*, *ruf* and *dom* distortions in XETPPs and XETPCs. From the results obtained in this test case, we can now go on and use these observations to discuss the macrocycle conformations in chlorophyll.

References:

- [1] Jentzen, W. et al. (1995). J. Am. Chem. Soc., 117, 11085–11097.
- [2] Senge, M. O. et al. (2015). Chem. Comm., 51, 17031-17063.
- [3] Groom, C. R. et al. (2016). Acta Cryst., B72, 171-179.
- [4] Jentzen, W. et al. (1997). J. Phys. Chem. B., 101, 1684-1699.

Keywords: NSD, chlorophyll, porphyrins

MS32-P02

Crystal structure investigation for series of salts of 2me-5na with different acids

Volodymyr Medviediev¹, Marek Daszkiewicz¹

1. Division of Structure Research, Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw, Poland

email: v.medvedev@int.pan.wroc.pl

The many of nitroaniline derivatives are materials with nonlinear optical (NLO) properties [1]. The molecules of nitroanilines contain the amino group which can be protonated and new compounds can be obtained in acidic conditions. Therefore, a search of compounds with NLO properties can be expanded for a large group of organic ionic compounds. Previously, some complexes of 2-methyl-4-nitroaniline with inorganic acids were studied [2]. As a continuation of those studies, here we present crystal structure of six new salts of 2-methyl-5-nitroaniline (2Me-5NA) with inorganic acids.

Five of obtained crystals have centrosymmetric space groups, but one does not have the centre of symmetry. Structures of all the compounds are stabilized by N–H•••A-hydrogen bonds between -NH₃⁺ group and inorganic anion. The stability of all the salts was checked in the rage 295-100K and no phase transitions were revealed.

Fig. 1. The networks of hydrogen bonds in crystal structures of $(H-2Me-5NA)HSO_4$, (H-2Me-5NA)Br and $(H-2Me-5NA)NO_3$ at 295K..

References:

- [1] Levine, B. F. et al. (1979). J. Appl. Phys. 50, 2523-2527.
- [2] Daszkiewicz, M. (2013). Cryst. Growth Des., 13, 2277-2285.

Keywords: Nitroanilines, NLO, structure