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A central question in crystallography is how (or if) a globally crystallographic pattern — a
crystal — can be determined by local rules. Therefore it is natural to ask ‘how far is local?’.
In the previous issue of Acta Cryst. A, Baburin et al. (2018) give a partial answer for a
particular class of (mathematical, idealized) crystals: they consider only ‘regular systems’.
A regular system is essentially a crystal with only one type of atom, where each atom is
surrounded in the same way by its neighbours. They show that in arbitrary dimension d
‘local’ means at least 2dR. Here R denotes the radius of the largest empty ball in the
crystal (compare the grey ball in Fig. 1). For instance, for the primitive lattice Z* in
dimension two we obtain d = 2 and R = 2!/2/2, and hence 2dR = 2(2'/?). The result says
for this example that we need to know at least all neighbourhoods of each atom with
radius 2(2!/?) in order to ensure that it is indeed a crystal.

Commonly used mathematical models for crystals (or quasicrystals, or more general
structures) are Delone sets. A Delone set is an (infinite, discrete) point set X such that (i)
there is r > 0 such that each open ball of radius r contains at most one point of X, and (ii)
there is R > r > 0 such that each closed ball of radius R contains at least one point of X.
The points of X represent the (ideal) atomic positions of some structure. One milestone
in mathematical crystallography is the Local Theorem (Delone ef al., 1976): it provides a
necessary and sufficient local condition for a Delone set X being a crystal. In a nutshell
this result states that the Delone set X is a crystal if and only if the number of different
local patterns of X of radius p stays bounded if p tends to infinity. For a more precise
version of the statement see Delone et al. (1976).

In order to count the number of different local patterns properly it is useful to define
the cluster-counting function. For x € X let C(p, x) denote the (centred) p-cluster
X N B(p, x), where B(p, x) denotes the ball of radius p centred in x. The cluster-counting
function N(p, X) is the number of different (centred) p-clusters in X. Note that it is
important to consider centred clusters: for instance, in the integer lattice Z* there are
several different p-clusters of the form Z* N B(p, x) if x is arbitrary, but there is only one
kind of p-cluster C(p, x) for any particular value p if x is required to lie in Z*.

From now on we consider this particular case where there is only one kind of p-cluster.
If pis very small (e.g. p < r) this does not imply anything on X: all p-clusters in X consist
of only one point. If p is large, and there is only one kind of p-cluster in X (up to
congruence), then by the Local Theorem X is necessarily crystallographic. Hence it is
natural to ask for good (upper and lower) bounds on the value o, such that, if there is
only one p-cluster in some Delone set X in d-dimensional Euclidean space, then X is
necessarily crystallographic. Thus p, depends on the dimension d, but is universal for all
Delone sets X in d-dimensional Euclidean space.

A commonly used mathematical model of a crystal is the orbit of one point, or of
several (inequivalent) points under a crystallographic group in d-dimensional Euclidean
space. In the first case the corresponding (infinite) Delone set is called a regular system,
in the latter case the Delone set is called a multiregular system. One particular instance of
the question of the origin of crystallinity is to find good bounds on the value p, described
above for regular systems. Let us call the smallest such p, the regularity radius (of all
regular systems X in a given dimension d).

Since we may scale any crystallographic Delone set X arbitrarily, the bounds on py,
ought to be expressed in terms of R (the radius of the largest empty ball in X). In
dimensions d = 1 and d = 2 the exact values of the corresponding p, are known: p; = 2R
and p, = 4R (see e.g. Barburin er al., 2018; Dolbilin, 2018). Similar arguments as in
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Figure 1

The orange points form a non-crystalline point set. The green balls of
radius 2(2'/?) can detect the non-crystallinity of the point set. Smaller
balls like the blue one cannot: they all look alike.

Dolbilin (2018) yield that p;, is at least 4R for any d > 2. Engel
conjectured that in dimension three we have 4R < ,6; < 6R
(Engel, 1986).

A good lower bound on p; for Delone sets in arbitrary
dimension is obtained in Barburin et al. (2018): it is shown that

0, 1s at least 2dR (Theorem 5.8). In particular, o, grows at least
linearly in the dimension d. Hence there is no general bound
on p, independent of d. The result is obtained by a sophisti-
cated construction of Delone sets X (‘Engel sets’) with only
one kind of centred p-cluster of radius p <2dR such that X
still is not a regular system. The construction works in any
dimension d > 3.

This recent result shows that there are still profound
questions and answers found in mathematical crystallography
today. A next step might be to treat the corresponding ques-
tion for multiregular systems. Here one cannot expect a
regularity radius 0, such that beyond that radius there exists
only one congruence class of p-clusters. Rather one would
require that beyond o, there are at most m types of p-clusters,
where m is the number of different orbits with respect to the
underlying crystallographic group.
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