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A central question in crystallography is how (or if) a globally crystallographic pattern – a

crystal – can be determined by local rules. Therefore it is natural to ask ‘how far is local?’.

In the previous issue of Acta Cryst. A, Baburin et al. (2018) give a partial answer for a

particular class of (mathematical, idealized) crystals: they consider only ‘regular systems’.

A regular system is essentially a crystal with only one type of atom, where each atom is

surrounded in the same way by its neighbours. They show that in arbitrary dimension d

‘local’ means at least 2dR. Here R denotes the radius of the largest empty ball in the

crystal (compare the grey ball in Fig. 1). For instance, for the primitive lattice Z2 in

dimension two we obtain d ¼ 2 and R ¼ 21=2=2, and hence 2dR ¼ 2ð21=2Þ. The result says

for this example that we need to know at least all neighbourhoods of each atom with

radius 2ð21=2Þ in order to ensure that it is indeed a crystal.

Commonly used mathematical models for crystals (or quasicrystals, or more general

structures) are Delone sets. A Delone set is an (infinite, discrete) point set X such that (i)

there is r> 0 such that each open ball of radius r contains at most one point of X, and (ii)

there is R> r> 0 such that each closed ball of radius R contains at least one point of X.

The points of X represent the (ideal) atomic positions of some structure. One milestone

in mathematical crystallography is the Local Theorem (Delone et al., 1976): it provides a

necessary and sufficient local condition for a Delone set X being a crystal. In a nutshell

this result states that the Delone set X is a crystal if and only if the number of different

local patterns of X of radius � stays bounded if � tends to infinity. For a more precise

version of the statement see Delone et al. (1976).

In order to count the number of different local patterns properly it is useful to define

the cluster-counting function. For x 2 X let Cð�; xÞ denote the (centred) �-cluster

X \ Bð�; xÞ, where Bð�; xÞ denotes the ball of radius � centred in x. The cluster-counting

function Nð�;XÞ is the number of different (centred) �-clusters in X. Note that it is

important to consider centred clusters: for instance, in the integer lattice Z2 there are

several different �-clusters of the form Z
2
\ Bð�; xÞ if x is arbitrary, but there is only one

kind of �-cluster Cð�; xÞ for any particular value � if x is required to lie in Z2.

From now on we consider this particular case where there is only one kind of �-cluster.

If � is very small (e.g. � � r) this does not imply anything on X: all �-clusters in X consist

of only one point. If � is large, and there is only one kind of �-cluster in X (up to

congruence), then by the Local Theorem X is necessarily crystallographic. Hence it is

natural to ask for good (upper and lower) bounds on the value b�d�d such that, if there is

only one �-cluster in some Delone set X in d-dimensional Euclidean space, then X is

necessarily crystallographic. Thus b�d�d depends on the dimension d, but is universal for all

Delone sets X in d-dimensional Euclidean space.

A commonly used mathematical model of a crystal is the orbit of one point, or of

several (inequivalent) points under a crystallographic group in d-dimensional Euclidean

space. In the first case the corresponding (infinite) Delone set is called a regular system,

in the latter case the Delone set is called a multiregular system. One particular instance of

the question of the origin of crystallinity is to find good bounds on the value b�d�d described

above for regular systems. Let us call the smallest such b�d�d the regularity radius (of all

regular systems X in a given dimension d).

Since we may scale any crystallographic Delone set X arbitrarily, the bounds on b�d�d

ought to be expressed in terms of R (the radius of the largest empty ball in X). In

dimensions d ¼ 1 and d ¼ 2 the exact values of the corresponding b�d�d are known: b�1�1 ¼ 2R

and b�2�2 ¼ 4R (see e.g. Barburin et al., 2018; Dolbilin, 2018). Similar arguments as in
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Dolbilin (2018) yield that b�d�d is at least 4R for any d � 2. Engel

conjectured that in dimension three we have 4R � b�3�3 � 6R

(Engel, 1986).

A good lower bound on b�d�d for Delone sets in arbitrary

dimension is obtained in Barburin et al. (2018): it is shown that

b�d�d is at least 2dR (Theorem 5.8). In particular, b�d�d grows at least

linearly in the dimension d. Hence there is no general bound

on b�d�d independent of d. The result is obtained by a sophisti-

cated construction of Delone sets X (‘Engel sets’) with only

one kind of centred �-cluster of radius �< 2dR such that X

still is not a regular system. The construction works in any

dimension d � 3.

This recent result shows that there are still profound

questions and answers found in mathematical crystallography

today. A next step might be to treat the corresponding ques-

tion for multiregular systems. Here one cannot expect a

regularity radius b�d�d such that beyond that radius there exists

only one congruence class of �-clusters. Rather one would

require that beyond b�d�d there are at most m types of �-clusters,

where m is the number of different orbits with respect to the

underlying crystallographic group.
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Figure 1
The orange points form a non-crystalline point set. The green balls of
radius 2ð21=2Þ can detect the non-crystallinity of the point set. Smaller
balls like the blue one cannot: they all look alike.
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