The Rigaku Oxford Diffraction XtaLAB Synergy: from Powder Analysis to Charge Density Studies and Protein Structure Solution.

Pierre Le Magueres1, Mari DelCampo1, Keisuke Saito1 and Joseph D. Ferrara1
Jakub Wojciechowski2 and Adrian Jones3, Damian Kucharczyk3, Mathias Meyer3.

1 Rigaku Americas Corporation, 9009 New Tails Drive, The Woodlands, Texas USA 77381-5209.
2 Rigaku Europe SE Hugenottenallee 167, 63263 Neu-Isenburg, Germany

Since the merger of Rigaku and Oxford Diffraction in 2015, a number of new and innovative tools for X-ray diffraction have been developed, based on the universal goniometer: the XtaLAB Synergy X-ray diffractometers. The series include a single/dual wavelength microfocus sealed tube (the XtaLAB Synergy-S), and a microfocus rotating anode (the single wavelength XtaLAB Synergy-R and dual wavelength XtaLAB Synergy-DW).

The combination of a powerful microfocus X-ray beam (with a choice of Cu, Mo or Ag wavelength), with variable divergence, couple to a versatile full 4-circles goniometer and the direct detecting photon counting HyPix detectors allows for crystallographers to perform powder, small molecule and protein measurements to cover a wide range of experiments.

In this work, we present results for the following experiments performed with the microfocus sealed tube Cu/Mo XtaLAB Synergy-S:

- Analysis of a powder mixture in which a minor phase of 0.8% relative weight of rutile was successfully detected.
- Charge density study of oxalic acid to 0.4 Å.
- Complete data collection to 0.837 Å on a crystal of chlorothiazide acid in space group P1.
- Structure solution of lysozyme by S-SAD phasing from a 1 hour data set collected on the curved photon counting detector, the HyPix-Arc150º.