Turning Up the Heat on Dynamic Proteins: Observing molecular motion in real time with temperature-jump X-ray crystallography <u>Thompson MC</u>^{1,a}, Wolff AM², Nango E^{3,4}, Kubo M⁵, Young ID¹, Nakane T⁶, Sugahara M^{3,4}, Tanaka R^{3,4}, Ito K⁷, Brewster AS⁸, Sierra RG⁹, Yumoto F¹⁰, Nomura T³, Owada S³, Hino T¹¹, Tosha T³, Tanaka T^{3,4}, Im D⁴, Aquila A⁹, Carbajo S⁹, Koralek J⁹, Yamashita A³, Luo F¹², Boutet S⁹, Sauter NK⁸, Tono K¹³, Iwata S^{3,4}, and Fraser JS¹ - 1) Department of Bioengineering and Therapeutic Sciences, UCSF - 2) Biophysics Graduate Program, UCSF - 3) RIKEN Spring-8 Center - 4) Department of Cell Biology, Graduate School of Medicine, University of Kyoto - 5) Department of Life Science, University of Hyogo - 6) MRC Laboratory of Molecular Biology, Cambridge University - 7) Asahi-Kasei Pharmaceutical Company - 8) Biosciences Division, Lawrence Berkeley National Laboratory - 9) Linac Coherent Light Source, SLAC National Accelerator Laboratory - 10) KEK High-Energy Accelerator Research Organization, University of Tokyo - 11) Department of Biotechnology, Tottori University - 12) Picobiology Institute, University of Hyogo - 13) Japan Synchrotron Radiation Institute - a) Contact email: mct.ucsf@gmail.com The importance of dynamics for protein function is widely appreciated; however, it remains challenging to understand, in atomic detail, how a molecule's biological activity is enabled by the physical coupling of its conformational fluctuations across varied length and time scales. Toward this end, time-resolved X-ray crystallography, in which fast Xray pulses are used to measure structural changes of macromolecules in real time, is a powerful tool for studying dynamics because it provides simultaneous structural and kinetic data. Unfortunately, its widespread use in structural biology has been limited by a major technical hurdle: in order to observe dynamic behavior from an ensembleaveraged experimental measurement, it is necessary to synchronize conformational changes for a significant fraction of molecules in the sample. Recently, we have been able to overcome this challenge by exploiting the temperature-sensitivity of protein conformational ensembles. Specifically, we performed temperature-jump crystallography, in which a pulsed infrared laser was used to rapidly heat crystallized proteins, initiating conformational dynamics that were subsequently monitored in real time using ultrafast X-ray pulses from a free-electron laser. Our experiments captured signatures of functional motions in lysozyme, which offer new insight into the catalytic cycle of this well-studied enzyme and validate the use of temperature-jump as a universal perturbation method for time-resolved crystallographic studies of protein dynamics. Acta Cryst. (2019). A75, a166