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Prenylated fungal indole alkaloids constituted of a bicyclo[2.2.2]diazaoctane core have attracted
considerable interest due to their wide spectrum of biological activities [1], and thus serve as
compelling targets for chemical synthesis and biosynthetic studies. Among them are the
calmodulin-inhibitory malbrancheamides [2] and the anthelmintic paraherquamides [3,4] (Fig. 1a).
We elucidated the malbrancheamide biosynthetic pathway (Fig. 1b) through complementary
approaches [5] of biomimetic total syntheses to access the natural alkaloid in racemic form and
in vitro enzymatic reconstitution to provide the natural antipode (+)-malbrancheamide. This
demonstrated a common biogenetic scheme of reductive cleavage of a L-Pro-L-Trp dipeptide from
a nonribosomal peptide synthetase (NRPS) followed by a cascade of reactions culminating in an
intramolecular [4 + 2] hetero-Diels-Alder (IMDA) cyclization. Enzymatic synthesis of optically pure
(+)-malbrancheamide requires MalC, a bifunctional NADPH-dependent reductase/Diels-Alderase
with the ability to rescue oxidized products to cycloaddition. We elucidated the structural basis for
IMDA catalysis with crystal structures of MalC (1.6 A) and its homolog PhqE from the
paraherquamide pathway (2.1 A, with substrate/product complex). The complementary structures
are compelling examples of protein evolution in molecular detail, as both MalC and PhqE evolved
from an ancestral short-chain dehydrogenase/reductase (SDR) to catalyze NADPH-dependent
reduction coupled to diastereo- and enantioselective Diels-Alder cyclization. Our work reveals a
new SDR subfamily with unexpected catalytic amino acids, a new group of Diels-Alder enzymes
[6,7], and novel structural insights into the nature of IMDA catalysis [8]. The fungal indole alkaloid
biosynthetic pathways also represent a novel “toolkit” for chemoenzymatic diversification of
natural products with opportunities for facile access to improved therapeutics to treat human and
animal diseases. The crystal structure determinations of MalC and PhgE had unique and
complementary complications that will be highlighted in the presentation.
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Figure 1. Fungal blcyclo[2.2.2]d|azaoctane indole alkaloids and biosynthesis.

a. Representative natural products with the bicyclo[2.2.2]diazaoctane group colored in red. b.
Scheme of malbrancheamide biosynthesis. The natural substrates are L-proline and L-tryptophan,
and the final product is malbrancheamide (+)-2. The product of each biosynthetic step is colored
differently. Proteins are indicated by spheres; MalG domains are adenylation (A1 and Ay),
thiolation (T4 and T;), condensation (C) and reductase (R).
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