Spin and charge stripes in trilayer nickelates

Daniel Phelana, J. Zhanga,b, Y.S. Chenc, D.M. Pajerowskid, H. Zhenga, A.S. Botanaa, L. Harrigera, J. Rodriguez-Riveraa, J.P.C. Rufff, N.J. Schreibera, B. Wanga, M.R. Normana, S. Rosenkranza, J. F. Mitchella

aMaterials Science Division, Argonne National Laboratory, dphelan@anl.gov
bMaterials Science and Technology Division, Oak Ridge National Laboratory
cChemMatCARS, The University of Chicago
dQuantum Condensed Matter Division, Oak Ridge National Laboratory
eNIST Center for Neutron Research, National Institute of Standards and Technology
fCHESS, Cornell University
gDepartment of Materials Science and Engineering, Cornell University

Highly orbitally polarized trilayer nickelates represent a potential platform for searching for high-T_c superconductivity \cite{1}. La$_4$Ni$_3$O$_8$, which has square-planar coordinated nickel, is one such material. It undergoes a semiconductor-insulator transition on cooling at $T_{SI} \sim 105$ K, which is accompanied by formation of charge stripes evidenced by X-ray scattering measurements \cite{2}. These stripes will be discussed along with our recent finding that the ground state is magnetic and consists of antiferromagnetic spin stripes that are commensurate with the charge stripes \cite{3}. The magnetic stripes are modeled as occurring within uncorrelated trilayers. Comparison of the charge and spin stripe order parameters reveals that, in contrast to single-layer nickelates and most transition metal oxides, the orders both appear at T_{SI}, suggesting a strong coupling between the two.

*This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division.

References

