Spin and charge stripes in trilayer nickelates

Daniel Phelan^a, J. Zhang^{a,b}, Y.S. Chen^c, D.M. Pajerowski^d, H. Zheng^a, A.S. Botana^a, L. Harriger^e, J. Rodriguez-Rivera^e, J.P.C. Ruff^f, N.J. Schreiber^g, B. Wang^a, M.R. Norman^a, S. Rosenkranz^a, J. F. Mitchell^a

^aMaterials Science Division, Argonne National Laboratory, <u>dphelan@anl.gov</u>

Highly orbitally polarized trilayer nickelates represent a potential platform for searching for high- T_C superconductivity [1]. La₄Ni₃O₈, which has square-planar coordinated nickel, is one such material. It undergoes a semiconductor-insulator transition on cooling at $T_{SI} \sim 105$ K, which is accompanied by formation of charge stripes evidenced by X-ray scattering measurements [2]. These stripes will be discussed along with our recent finding that the ground state is magnetic and consists of antiferromagnetic spin stripes that are commensurate with the charge stripes [3]. The magnetic stripes are modeled as occurring within uncorrelated trilayers. Comparison of the charge and spin stripe order parameters reveals that, in contrast to single-layer nickelates and most transition metal oxides, the orders both appear at T_{SI} , suggesting a strong coupling between the two.

*This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division.

References

- [1] J. Zhang, A. S. Botana, J. W. Freeland, D. Phelan, H. Zheng, V. Pardo, M. R. Norman, and J. F. Mitchell, Nat. Phys. 13, 864 (2017).
- [2] J. Zhang, Y. S. Chen, D. Phelan, H. Zheng, M. R. Norman, and J. F. Mitchell, Proc. Natl. Acad. Sci. U. S. A. 113, 8945 (2016).
- [3] J. Zhang, D. M. Pajerowski, A. S. Botana, L. Harriger, J. Rodriguez-Rivera, J. P. C. Ruff, N. J. Schreiber, B. Wang, Yu-Sheng Chen, M. R. Norman, S. Rosenkranz, J. F. Mitchell, and D. Phelan, arXiv:1903.03246 (2019).

^bMaterials Science and Technology Division, Oak Ridge National Laboratory

[°]ChemMatCARS, The University of Chicago

^dQuantum Condensed Matter Division, Oak Ridge National Laboratory

eNIST Center for Neutron Research, National Institute of Standards and Technology

^fCHESS, Cornell University

⁹Department of Materials Science and Engineering, Cornell University