Probing the thermal stability and X-ray crystal structures of select members of the Verona integron-encoded metallo-β-lactamase 2 family Jonathan Montgomery^{\$}, Matthew Orischak^{\$}, Matthew Morris^{\$}, Ben A. Shurina^{\$}, Zishuo Cheng^{\$}, Christopher Bethel[&], Walt Fast^{*}, Robert Bonomo[&], Jay Nix[#], Michael Crowder^{\$}, Richard C. Page^{\$} ^{\$}Department of Chemistry & Biochemistry, Miami University, Oxford, OH 45056 USA [&]Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106 USA [#]Molecular Biology Consortium, Beamline 4.2.2, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA [%]Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, and the LaMontagne Center for Infectious Disease, University of Texas, Austin, Texas 78712 USA Corresponding Author: Richard C. Page, pagerc@MiamiOH.edu Verona integron-encoded metallo- β -lactamase (VIM) is an enzyme that confers antibiotic resistance to bacteria by hydrolyzing antibiotic drugs containing a β -lactam ring, such as penicillin. In order to understand the mechanisms of resistance conferred by bacteria expressing VIM or VIM-like proteins, structural information for these proteins must be determined. The VIM-2 sub-family comprised of 24 VIM variants were characterized using a combination of killing assays and differential scanning fluorimetry (DSF). Select variants from the VIM-2 family were used in crystallization experiments. Crystal structures for both VIM-20 and VIM-31 have been determined. In the structure of VIM-20 the mutation H229R was found to form a salt bridge which may account for the increase in thermal stability. In the structure of VIM-31 the Y201H mutation pinches a loop domain found near active site, which may account for the enhanced resistance profile of VIM-31 as well as a dramatic decrease in thermal stability. Further EPR studies of the loop domain may reveal if this change in resistance is a result of changes in the dynamic motions of the loop.