Probing the thermal stability and X-ray crystal structures of select members of the Verona integron-encoded metallo-β-lactamase 2 family

Jonathan Montgomery, Matthew Orschak, Matthew Morris, Ben A. Shurina, Zishuo Cheng, Christopher Bethel, Walt Fast, Robert Bonomo, Jay Nix, Michael Crowder, Richard C. Page

Department of Chemistry & Biochemistry, Miami University, Oxford, OH 45056 USA
Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106 USA
Molecular Biology Consortium, Beamline 4.2.2, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA
Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, and the LaMontagne Center for Infectious Disease, University of Texas, Austin, Texas 78712 USA

Corresponding Author: Richard C. Page, pagerc@MiamiOH.edu

Verona integron-encoded metallo-β-lactamase (VIM) is an enzyme that confers antibiotic resistance to bacteria by hydrolyzing antibiotic drugs containing a β-lactam ring, such as penicillin. In order to understand the mechanisms of resistance conferred by bacteria expressing VIM or VIM-like proteins, structural information for these proteins must be determined. The VIM-2 sub-family comprised of 24 VIM variants were characterized using a combination of killing assays and differential scanning fluorimetry (DSF). Select variants from the VIM-2 family were used in crystallization experiments. Crystal structures for both VIM-20 and VIM-31 have been determined. In the structure of VIM-20 the mutation H229R was found to form a salt bridge which may account for the increase in thermal stability. In the structure of VIM-31 the Y201H mutation pinches a loop domain found near active site, which may account for the enhanced resistance profile of VIM-31 as well as a dramatic decrease in thermal stability. Further EPR studies of the loop domain may reveal if this change in resistance is a result of changes in the dynamic motions of the loop.