MS12-05 | ALEPH: A New Software for Structural Analysis and Generation of Fragment Libraries for Molecular Replacement

Medina, Ana (Institute of Molecular Biology of Barcelona, Spanish National Research Council (IBMB-CSIC), Barcelona, ESP); Triviño, Josep (Institute of Molecular Biology of Barcelona, Spanish National Research Council (IBMB-CSIC), Barcelona, ESP); Millán Nebot, Claudia Lucía (Institut de Biologia Molecular de Barcelona, Barcelona, ESP); J. Borges, Rafael (Institute of Molecular Biology of Barcelona, Spanish National Research Council (IBMB-CSIC), Barcelona, ESP); Usón, Isabel (Catalan Institution for Research and Advanced Studies (ICREA), IBMB-CSIC, Barcelona, ESP); Sammito, Massimo (Cambridge Institute for Medical Research, Cambridge, GBR)

RCIMBOLDO [1] is a fragment based molecular replacement framework where Local Folds (LF: small discontinuous fragments) are located with PHASER [2] providing phases that are improved and interpreted in SHELXE [3].

ALEPH [4] is a program for retrieving structural properties of proteins from the PDB [5], based solely on geometrical descriptors, Characteristic Vectors (CVs) [6], computed as centroid $C\alpha$ -O vectors on consecutive tripeptides. Networks of CVs hold angles and distances representing protein structure.

ALEPH implements four different tasks:

- Annotation: a customizable secondary and tertiary structure analysis to map general or local properties controlling the strictness of the annotation.
- Decomposition: structure subdivision into smaller compact folds. ARCIMBOLDO_SHREDDER [1] gives the model internal degrees of freedom based on this decomposition.
- Library generation: to extract and cluster fragment libraries collecting structural variations of the same fold. Each library expresses a common pattern as the hypothesis for phasing whereas ARCIMBOLDO BORGES [1] jointly evaluates results for all models, revealing correct solutions.
- Superposition: align a fragment onto a complete structure.
- A graphical user interface is provided to perform each task and to visualize and plot the results in real time.
- [1] Millán, C. et al., (2015) IUCrJ., 1, 95.
- [2] McCoy, AJ, et al. (2007). J Appl Crystallogr 40, 658.
- [3] Usón, I & Sheldrick, G. (2018) Acta Cryst. D74, 106.
- [4] Medina, A., et al. (2019) In preparation.
- [5] Berman, H., et al. (2015) Nucleic Acids Research. 35, D301
- [6] Sammito, M., et al. (2013). Nat Methods. 10, 1099.