MS14-P39 | STEREOCHEMISTRY OF TL(I) IN INORGANIC OXYSALTS

Markovski, Mishel (Saint Petersburg State University, Sankt-Petersburg, RUS); Siidra, Oleg (Saint Petersburg State University, Sankt-Peterburg, RUS)

183 monovalent thallium oxysalts for which good refinements exist were reviewed. 303 $\text{TI}^+\text{-O}_n$ and 11 $\text{TI}^+\text{-O}_n X_m$ (X = F, CI, Br) polyhedra consisting of 2449 $\text{TI}^+\text{-O}$ ($\leq 3.55\text{Å}$) and 74 TI-X ($\leq 3.7\text{ Å}$) bonds were taken into consideration. Bond-valence calculations and geometrical parameters ([Δ] displacement parameter, [Pd] distortion, [V_p] polyhedral volume, [R_{sph}] sphere radius, [V_{sph}] sphere volume, [S] sphericity, [ECC_l] linear eccentricity and [ECC_v] volume eccentricity) were calculated in order to evaluate the influence of the 'lone pair' (LP) stereoactivity on the distortion of $\text{TI}\text{-O}_n$ polyhedra. In 2/3 of complexes the LP stereoactivity is pronounced. Complexes with active LP are generally built of strong TI-O bonds ($\leq 3\text{ Å}$). $\text{TI}\text{-O}_n$ polyhedra were classified into five types: I-hemidirected convex, II-hemidirected concave, III-equatorial, IV-bisdirected and V-holodirected. Different geometrical parameters and trends for each type were evaluated and will be discussed.

This work was financially supported by the Russian Science Foundation through the grant 16-17-10085 and internal travel grant of SPbSU.