MS19-03 | CRYSTAL GROWTH INVESTIGATIONS OF LITHIUM IRIDATE, LI₂IRO₃, AND LITHIUM RUTHENATES, LI₂RuO₃ AND LI₃RuO₄

Kerkhoff, Linda (Section Crystallography, Institute of Geology and Mineralogy, University of Cologne, Köln, GER); Becker, Petra (Section Crystallography, Institute of Geology and Mineralogy, University of Cologne, Köln, GER)

Recently, lithium ruthenates, Li₂RuO₃ and Li₃RuO₄, and the Li₂IrO₃-modifications attracted considerable attention with exhibiting unconventional magnetism[1-3].

The structures of the three modifications of Li_2IrO_3 ((α -, β - and γ -Li₂IrO₃[4-6]) and Li₂RuO₃[7] consist of a honeycomb-like network, while the main structural components of Li₃RuO₄ are zigzag chains[8]. The need for high-quality single crystals for further investigations turns all compounds into subjects of crystal growth efforts, which are complemented by DTA and powder-XRD.

Single crystals are grown from the gaseous phase. A modified setup after [9] was realised, in which educts are separated by spacers with spikes, acting as preferred nucleation sites. The place of crystallisation depends on the position of the chemical equilibrium. Moreover, Li₂IrO₃-modifications show preferred growth conditions. For the first time, the applicability of this setup for the growth of Li₃RuO₄ is shown.

Currently, single crystals of α -Li₂IrO₃(1mm), β -Li₂IrO₃(0,5mm),Li₂RuO₃(0,6mm) and Li₃RuO₄(0,1mm) can be grown successfully.

- [1] Jackeli & Khaliullin, Phys. Rev. Lett., 102,017205 (2009)
- [2] Chaloupka et al., Phys. Rev. Lett., 105,027204(2010).
- [3] Manuel et al., Phys. Rev. B, 84,174430(2011).
- [4] O'Malley et al., J. Solid State Chem., 181, 1803–1809 (2008).
- [5] Biffin et al., Phys. Rev. B, 90, 205116(2014).
- [6] Modic et al., Nat. Commun., 5,4203(2014).
- [7] Kobayashi et al., Solid State Ionics, 82,25-31(1995).
- [8] Alexander et al., J. Mater. Chem., 13,2612-2616(2003).
- [9] Freund et al., Scientific reports, 6,35362(2016).