MS23-P09 | Incommensurately modulated structures in the series RETe_{2-δ}

Poddig, Hagen (Technische Universität Dresden, Dresden, GER); Doert, Thomas (Technische Universität Dresden, Dresden, GER)

Rare earth metal polychalcogenides $REX_{2-\delta}$ (X = S, Se, Te; $0 \le \delta \le 0.2$) comprise puckered [REX] double layers and planar [X] layers, the latter being subject to modulations due to electronic reasons and chalcogen defects [1].

The main reflections of all $RETe_{2-\delta}$ crystals correspond to an average ZrSSi type (space group P4/nmm) with unit cell with cell dimensions of $a\approx 440$ to 450 pm and $c\approx 910$ to 920 pm. Satellite positions, however, vary with δ . The structures of $RETe_{1.9}$ (RE=La, Pr, Nd) compounds can be described in the tetragonal superspace group $P4/n(\alpha \delta 1/2)00(-\delta \alpha 1/2)00$ with modulation vectors $q_1\approx (0.26,0.32,1/2)$ and $q_2\approx (-0.32,0.26,1/2)$, whereas LaTe_{1.8} is orthorhombic, superspace group $Pmmn(\alpha \delta 1/2)000$ ($-\alpha \delta 1/2)000$ as its modulation vectors $q_1=(0.275,0.31,1/2)$ and $q_2=(-0.275,0.31,1/2)$ are incompatible with fourfold rotational symmetry.

The Te layers of the $RETe_{1.9}$ compounds show a displacive and occupational modulation, forming an array of vacancies, $Te_2^{2^-}$ anions and linaer $Te_3^{4^-}$ anions. For LaTe_{1.8}, the modulation in the Te layers is more pronounced with a variety of different Te anions.

[1] T. Doert, C. J. Müller: Binary Polysulfides and Polyselenides of Trivalent Rare-Earth Metals, in: *Reference Module in Chemistry, Molecular Sciences and Chemical Engineering*, Elsevier, **2016**.