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The intrinsic, hyperbolic crystallography of the Diamond and Gyroid minimal

surfaces in their conventional unit cells is introduced and analysed. Tables are

constructed of symmetry subgroups commensurate with the translational

symmetries of the surfaces as well as group–subgroup lattice graphs.

1. Introduction

The Primitive, Diamond (Schwarz, 1890) and Gyroid (Schoen,

1970) minimal surfaces are well known structures in the

context of materials science, where they emerge in simulations

of and experiments on a variety of systems ranging from

butterfly wing scales (Dolan et al., 2015) and biological

detergent systems (Mezzenga et al., 2019) to bulk polymer

phases (Castelletto & Hamley, 2004).

Their crystallographic properties are well documented

(Sadoc & Charvolin, 1989; Robins et al., 2004; Hyde et al.,

2014) though only for the primitive unit cell of the side-

preserving translation group. However, many applications

such as molecular simulations (Kirkensgaard et al., 2014), field

theory based approaches (Welch et al., 2019) or meshing

algorithms (Pellé & Teillaud, 2014) rely on mutually ortho-

gonal lattice vectors of equal length, corresponding to the

conventional unit cells of these surfaces. The results from such

computations are therefore better analysed in the conven-

tional unit-cell settings (Fig. 1).

Here, we extend previous results on the intrinsic (hyper-

bolic) crystallography of these surfaces (Robins et al., 2004) to

these settings; we introduce canonical versions of their

conventional unit cell in the universal covering space, H2,

along with the group theory needed to construct the related

translational subgroups. We derive the group–subgroup

structure of the symmetries commensurate with the surfaces in

these settings. We label our groups by their orbifold symbols

which are explained at length in the literature (Thurston, 1980;

Conway et al., 2008; Hyde et al., 2014).

For completeness, we include the Primitive surface in our

calculations and tables but stress that these are identical to the

ones presented earlier (Robins et al., 2004), as the primitive

and conventional unit cells of the Primitive surface coincide.

We note that recent changes to GAP’s enumeration algo-

rithms mean that our ordering differs slightly from the

previous report.

ISSN 2053-2733

Received 2 November 2021

Accepted 6 December 2021

Edited by A. Altomare, Institute of Crystal-

lography - CNR, Bari, Italy

Keywords: minimal surfaces; hyperbolic

geometry; symmetry groups; subgroup lattices;

conventional unit cells.

Supporting information: this article has

supporting information at journals.iucr.org/a

http://crossmark.crossref.org/dialog/?doi=10.1107/S2053273321012936&domain=pdf&date_stamp=2022-01-01


2. Preliminaries and method

The intrinsic symmetry group of these three minimal surfaces

can be labelled with the orbifold symbol �246. Similarly, upon

compactification by pairwise identifying sides of the unit cells

in Fig. 1, the resulting surfaces are the (genus-3) tritorus, the

(genus-9) enneatorus and the (genus-5) pentatorus, respec-

tively. Hence, the Conway orbifold symbols �3, �9 and �5

describe the related translational groups.

We list the translations needed to construct the translational

subgroups corresponding to the domains in Fig. 1 in the

supporting information along with additional information and

data on these groups.

Next, we construct and analyse all symmetry groups of the

surfaces by the procedure described by Robins et al. (2004)

using the methods outlined below along with the data

presented in the supporting information. First, all subgroups

for a given surface (represented via the quotient group

labelled �246=T, where T is the appropriate translational

subgroup) are computed using GAP and KBMag (Epstein et

al., 1991; The GAP Group, 2021). Then, for each subgroup, its

generators are identified and the associated cosets are calcu-

lated. From these cosets, the Delaney–Dress (Dress, 1987;

Delgado-Friedrichs, 2003) and orbifold symbols of the

subgroup are computed. The suite of resulting groups describe

all possible intrinsic symmetry groups of the parent minimal

surfaces whose translations are those of their conventional

unit cells.

3. Results and discussion

The results of our enumeration can be found in Table 1.

Expanded tables containing detailed information on each

subgroup can be found in the supporting information along-

side group–subgroup lattice graphs outlining the structure of

our three quotient groups.

We note that the translational domains shown in Fig. 1 and

the corresponding translations listed in the supporting infor-

mation are not unique. One can represent the pentatorus as

e.g. a 20-gon rather than the outlined 30-gon, and accordingly

the enneatorus can be represented as a 36-gon rather than our

60-gon. However, we retain the sixfold symmetry around the

origin for easier subsequent analysis.

Changing translational symmetries of the primitive unit

cells to those of the conventional unit cells admits additional

symmetry groups on the surfaces. Fig. 2 shows an example of a

trivalent net on the Gyroid which respects the translations of

the conventional, but not the primitive, unit cell of that

surface. The specific decoration and its embeddings in H2 and
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Table 1
The number of subgroups per index in �246=T, where T is the
translational subgroup for the given surface in its conventional unit cell.

The entries assigned a dash, –, are not combinatorially possible for the
respective surface/group.

Primitive Diamond Gyroid

Subgroup index Euler characteristic �246=�3 �246=�9 �246=�5

1 � 1
24 1 1 1

2 � 1
12 7 7 7

3 � 1
8 1 1 1

4 � 1
6 8 8 12

6 � 1
4 15 15 15

8 � 1
3 8 10 14

12 � 1
2 39 55 47

16 � 2
3 7 14 12

24 �1 32 128 64

32 � 4
3 1 10 7

48 �2 11 135 41

64 � 8
3 – 7 1

96 �4 1 57 11

128 � 16
3 – 1 –

192 �8 – 13 1

384 �16 – 1 –

Total 131 463 234

Figure 1
Left: the Primitive (top), Diamond (middle) and Gyroid (bottom)
minimal surfaces oriented in their conventional unit cells with space
groups Pm�33m, Fd�33m and I4132, respectively. Right: corresponding
translational patches in the universal covering space, H2, visualized using
the Poincaré disc model ofH2. The combinatorics and group theory of the
compactification of these patches as well as their coordinates can be
found in the supporting information.



on the Gyroid were derived as outlined elsewhere (Pedersen

& Hyde, 2018; Hyde & Pedersen, 2021). Whereas the primitive

cells admit 131 distinct groups, the enlarged unit cells of the

Diamond and Gyroid surfaces include 463 and 234 groups,

respectively, each associated with a three-dimensional space

group. More information on these groups can be found in the

supporting information and at https://gitlab.com/mcpe/

tpmsgroups.
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Figure 2
Left: an [8, 3] Schwarzite net on the Gyroid with intrinsic symmetry 23�,
subgroup No. 222 in the table for the Gyroid in the supporting
information. The net – or rather its symmetry – is not commensurate
with the primitive unit cell yet can be embedded in E

3 via the
conventional unit cell. Right: the same net shown in the universal
covering space, H2. Crystallographic information on the canonical
embedding (Delgado-Friedrichs & O’Keeffe, 2003) of this net can be
found in the supporting information.
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