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Chiral spiral cyclic twins
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A formula is presented for the generation of chiral m-fold multiply twinned two-

dimensional point sets of even twin modulus m > 6 from an integer inclination

sequence; in particular, it is discussed for the first three non-degenerate cases m

= 8, 10, 12, which share a connection to the aperiodic crystallography of axial

quasicrystals exhibiting octagonal, decagonal and dodecagonal long-range

orientational order and symmetry.

1. Introduction

The binary intermetallic compound NiZr exhibits a remark-

able tendency of forming cyclic tenfold twins from either a

vitrified amorphous matrix upon heating (Jiang et al., 1985) or

a deeply undercooled melt upon solidification (Hornfeck et al.,

2014, 2018).

Similar distinctive cyclic twinning phenomena occur in

other intermetallic alloys, too, a particularly pronounced

example being Al20Cu2Mn3 (Feng et al., 2014; Wang et al.,

2016). In nature, cyclic twins are commonly found in rutile-

type structures, such as in the mineral cassiterite (SnO2), as

has been studied recently both in the context of the reticular

theory of twinning (Nespolo & Souvignier, 2015), as well as

in electron backscatter diffraction (EBSD) experiments

performed on synthetic samples doped with CoO and Nb2O5

(Padrón-Navarta et al., 2020). A geometric theory of cyclic

growth twins (Ericksen, 2006) has been applied not only to

multiple twins of rutile (TiO2), but also to those found in

aragonite (CaCO3), marcasite (FeS2) and quartz (SiO2). The

concept of cyclic twinning or cyclic intergrowth plays an

important role in the description and classification of inor-

ganic crystal structures (Hyde et al., 1979; Andersson & Hyde,

1982; Andersson & Stenberg, 1982; Stenberg & Andersson,

1982; Andersson, 1983; Hyde & Andersson, 1989), with

twinning phenomena in general, due to their variety and

profundity, arguably forming their own subfield of crystal-

lography: geminography (Grimmer & Nespolo, 2006).

In order to better understand the twin formation process an

atomistic model was developed (Hornfeck et al., 2014, 2018;

Hornfeck, 2018), based on some idealized geometric proper-

ties of NiZr’s orthorhombic unit cell, including not only its

special axial ratio, in the form of 2 tan�1ða=bÞ ’ 36�, being the

prerequisite of tenfold twinning, but also taking into account

special values for the atomic coordinates, governed by a Z

module. This model has been experimentally confirmed at

atomic resolution (Hornfeck et al., 2018) by means of high-

angle annular dark-field scanning transmission electron

microscopy (HAADF-STEM), thereby making NiZr the first

example of Z-module twinning (Quiquandon et al., 2016;

Sirindil et al., 2017, 2018). The atomistic model found (Fig. 1)

exhibits some remarkable properties: (i) the structure in the
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bulk of the twin domains is identical to the structure extending

across the twin boundaries; (ii) the structure is chiral,

featuring an irrational shift between adjacent twin domains;

(iii) the structure is solely determined by the choice of the twin

modulus, m ¼ 10, determining a corresponding Z module

(apart from a global scaling factor fixing the minimal inter-

atomic distance); (iv) the structure features a unique

description based on the union of ten spirals.

The latter point deserves particular attention. One impor-

tant aspect to note about spiral patterns is their ubiquitous

occurrence in nature [see Hammer (2016) for an excellent

overview], in particular as growth forms in the plant and

animal kingdoms, yet also in the form of screw dislocation

based growth spirals (helices), in the inanimate realm of

crystals. Spiral microstructures have been observed in some

eutectic alloys as well (Fullman & Wood, 1954). Astonishing

geometric regularity can thus be found in biology as well as

chemistry, such as in the spatial arrangement of seeds in the

sunflower floret (Vogel, 1979), as a specific example of phyl-

lotaxis (Jean, 1995; Adler et al., 1997; Pennybacker et al.,

2015), or the atoms in polymeric chain molecules (Müller,

2017), in which their spiral arrangement extends along a

common screw axis into that of closely related three-dimen-

sional helices, with the double-helical structure of DNA

arguably the most important representative (Watson & Crick,

1953). In the field of crystallography botanical phyllotaxis

inspired the study of spiral lattices (Rivier, 1988; Rothen &

Koch, 1989a,b; Kunz & Rothen, 1992; Sadoc et al., 2012), a

concept pioneered and greatly expanded upon by Bursill and

coworkers, both in direct and reciprocal space, and with

relations to aperiodic crystals (Bursill et al., 1987; Fan, Peng et

al., 1988; Fan, Bursill et al., 1988; Bursill, 1990).

For most of these examples, the geometric properties of

a particular spiral type (Archimedean, logarithmic etc.)

frequently match in a natural fashion with simple growth

principles (equidistant layering, self-similarity/scale invariance

etc.), thereby rationalizing the self-organization of matter on

its way from chaos to order. By their observed morphology

and microstructure, and following a simple geometrical argu-

ment, the formation of cyclic twins is naturally thought to

originate in the nucleation from a single common seed. Yet,

how exactly the twinning, which can be seen as a disadvan-

tageous defect occurring in an otherwise undistorted bulk

crystal, is induced first, and furthermore preserved during

crystal growth, is much less clear (Shahani & Voorhees, 2016).

In the case of NiZr, however, the spiral description suggests an

intrinsic mechanism, in the form of a lateral growth program,

explaining effortlessly the formation of a cyclically twinned

microstructure and its spatial continuation into a macro-

scopically observable twinned morphology. The resulting twin

structure is a highly correlated arrangement of atoms, and due

to its perfect twin boundaries matching the bulk crystal,

energetically favorable.

These favorable properties recommend an investigation

into the potential of transcending the NiZr model into one of

chiral spiral cyclic twins (CSCTs) of arbitrary m.

2. Exposition

The key to the desired generalization is given by exploring and

exploiting the most suitable parametrization of the CSCT in

order to prepare the stage for subsequent generalizations. In

the following we state the obtained results and refer the

interested reader to the extensive appendix containing a

never-dared-to-ask-for discussion about the derivation and

further optimization of this parametrization.

2.1. Parametrization

Two-dimensional CSCT point patterns can be parametrized

by three numbers: (i) an integer modulus m, (ii) an integer

multiplier �m and (iii) a real scaling factor �m. To cut things

extremely short for the moment, the parametrization is based

upon the use of the complex mth roots of unity

!k
m ¼ expði2�k=mÞ ð1Þ

and their combination according to
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Figure 1
Idealized cyclic tenfold twin structure of NiZr. Distinct atom types and
heights in the out-of-plane direction are highlighted by different circle
styles and radii (Ni: solid circles; Zr: open circles; z ¼ 1=4: small circles;
z ¼ 3=4: large circles). Highlighted by lines are the twin boundaries of
ten wedge-like twin domains, shifted against each other in the way of
an iris aperture, as well as two unit cells, one within the bulk of a twin
domain (red) and one across a twin boundary (green). Note the chiral
arrangement of twin domains, and the spiral arrangement of atoms,
alternating both in atom type and height, thereby inducing a kind of
antisymmetry between adjacent twin domains, reducing the symmetry
from tenfold for the non-decorated two-dimensional twin to fivefold for
the decorated three-dimensional one. Note also that in the twin only five
distinct orientation states occur, with opposite domains (alternating blue/
cyan unit-cell pattern) belonging to the same state.



�k;‘ ¼ �m!
k
m þ

P‘�1

j¼0

!�ðjÞþk
m ð2Þ

with Cartesian coordinates resulting as points

Pk;‘ ¼ ðRe �k;‘; Im �k;‘Þ ð3Þ

suitably indexed as the ‘th spiral node of the kth spiral branch.

Here,

�ðjÞ ¼ �ðjÞ þ fj� �ðjÞgmod 2 ð4Þ

denotes an integer inclination function, itself described by an

integer baseline function determined by the rule

��ðjÞ ) the digit j appears 2bj=�mc þ 1 times; ð5Þ

which, for the cases under discussion hereafter, can be

expressed algebraically as

�ðjÞ ¼ b �mjð Þ
1=2
c: ð6Þ

Here, f�gmod � and b�c denote the integer modulo and floor

function, respectively. More details are given in the appendix.

Empirically it is found that only certain combinations of

parameters yield a meaningful, uniformly distributed point

pattern composed of self-avoiding discrete spirals. Note-

worthy are the following triples ðm; �m; �mÞ, which will be

discussed in detail hereafter: ð6; 1; 1Þ, ½8; 1; 1þ ð2Þ1=2
�,

ð10; 2; �Þ and ½12; 2; 1þ ð3Þ1=2
�. Here, � ¼ ½1þ ð5Þ1=2

�=2

denotes the golden ratio. The triples with m ¼ 8; 10; 12 are

especially interesting because their rotational symmetry

matches those of octagonal, decagonal and dodecagonal axial

quasicrystals.

2.2. The case m = 6

As a prelude we briefly discuss the case m ¼ 6. As it turns

out, this is a degenerate case, not matching the subsequently

described twin structures for m ¼ 8; 10; 12, yet still of some

interest in terms of its crystallographic interpretation. The

sixfold ‘chiral’ spiral ‘twin’ is the hexagonal honeycomb grid

(Fig. 2).

Thus, for indistinguishable points in an infinite pattern, it is

neither chiral, nor a twin, since there are no observable

boundaries, which would induce both properties to the point

pattern. Instead, the hexagonal honeycomb grid is the vertex

set of one of the three tessellations of the plane by regular

convex polygons, with the other two tilings being based on the

vertex set as defined by the two-dimensional triangular and

square lattice.

The case m ¼ 6 is also interesting, insofar as a cyclic twin

nucleation has been reported to occur in tin-based solder

alloys (Lehman et al., 2010), which strongly resembles the

cyclic twin nucleation phenomena observed for NiZr (Horn-

feck et al., 2018), yet differs in that the symmetry of the twin is

sixfold.

2.3. The cases m = 8, 10, 12

The exploration of the parameter space ðm; �m; �mÞ, with

the already known case ð10; 2; 1:618Þ, and following the

rationale described in the appendix, leads to the discovery of a

regular CSCT described by the parameter triple ð8; 1; 2:414Þ

with �8 ¼ 1þ ð2Þ1=2. This seemed to suggest a correspondence
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Figure 2
Sixfold CSCT (degenerate case). Shown are 300 points per spiral branch,
1800 in total. A single spiral branch is highlighted by solid circles.

Figure 3
Eightfold CSCT. Shown are 150 points per spiral branch, 1200 in total. A
single spiral branch is highlighted by solid circles.



with the well known (Niizeki, 1989; Burdik et al., 1998) and

experimentally observed quadratic irrational inflation factors

(see the appendix for the concept and notation)

�IM
8 ¼ ð1; 1; 2; 1Þ ’ 2:414;

�IM
10 ¼ ð1; 1; 5; 2Þ ’ 1:618;

�IM
12 ¼ ð2; 1; 3; 1Þ ’ 3:732 ð7Þ

for intermetallic (IM) axial quasicrystals with eight-, ten- and

12-fold rotational symmetry, including the silver, golden and

platinum ratio, respectively. Thus, a triple ð12; 3; 3:732Þ was

checked for, yet did not yield a CSCT. Neither did a triple

ð12; 3; 0:822Þ obtained by a linear extrapolation of the estab-

lished octagonal and decagonal parameters, although its

regularity was higher than in the aforementioned case.

Instead, it was found empirically that the triple ð12; 2; 2:732Þ

with �m ¼ 2 and �12 ¼ 1þ ð3Þ1=2 yields a perfect solution!

Figs. 3, 4 and 5 show the corresponding point patterns.

Notably, the observed factors �8 ¼ 1þ ð2Þ1=2 and

�12 ¼ 1þ ð3Þ1=2 can be associated with a single formula,

�m ¼ 1þ 2 cosð2�=mÞ; ð8Þ

which is known to describe the inflation factors of certain

quasiperiodic rhombic tilings of octagonal and dodecagonal

symmetry as obtained by the projection method (Steurer &

Deloudi, 2009; p. 38 for the octagonal Ammann–Beenker

tiling and p. 40 for the dodecagonal rhomb tiling). Note that

the inflation factor �12 ¼ 1þ ð3Þ1=2, while not to be regarded

the most characteristic inflation factor for dodecagonal

tilings, occurs in several distinct instances (Schaad & Stampfli,

2021; see also https://geometricolor.wordpress.com/2012/07/

29/another-tiling-of-dodecagonal-symmetry/ and https://

geometricolor.wordpress.com/2021/03/04/yet-another-tiling-with-

12-fold-rotational-symmetry/).

Now, equation (8) has a simple geometric interpretation as

the circumcircle radius RCC of the corresponding regular m-

gon (Fig. 6), spanned by m triples of mutually adjacent thin

and thick rhombs of unit edge length e ¼ 1 [compare this with

equation (58) in the appendix, in which the unit edge length

E ¼ 1 refers to the regular m-gon instead].

24 Wolfgang Hornfeck � Chiral spiral cyclic twins Acta Cryst. (2022). A78, 21–35

research papers

Figure 4
Tenfold CSCT. Shown are 150 points per spiral branch, 1500 in total. A
single spiral branch is highlighted by solid circles.

Figure 5
12-fold CSCT. Shown are 150 points per spiral branch, 1800 in total. A
single spiral branch is highlighted by solid circles.

Figure 6
Derivation of the factor �m for the cases of m ¼ 8 (left) and m ¼ 12
(right). Shown are the central polygons of the CSCTs together with a
triple of mutually adjacent rhombs. The triple is composed of a pair of
thin rhombs oriented towards the center and a single thick rhomb at the
periphery. The thin rhombs have an acute angle of � ¼ 2�=m (dark gray),
which corresponds to half of the acute angle of a single thick rhomb,
which, in the special case of m ¼ 8, corresponds to half of a right angle of
a square. A right triangle (light gray) can be constructed and used to
determine the length of a segment of the circumcircle radius (thick line)
of the polygon to be equal to e cos �, in which e denotes the edge length of
a rhomb. Then, the total circumcircle radius is equal to R ¼ eþ 2e cos�,
and for e set to unity, �m ¼ 1þ 2 cos � follows.



2.4. The general scheme

Thus, from the small number of observations made so far,

and taking the approach detailed in the appendix into account,

one might boldly generalize the existence of two series of

CSCTs, one for m ¼ 6; 10; 14; 18; 22; . . . and another one for

m ¼ 8; 12; 16; 20; 24; . . .. In particular, if m0 ¼ m=2 is an odd

number, one obtains (see the appendix)

�m ¼ ðm� 2Þ=4 and �m ¼
1

2 sinð�=mÞ
; ð9Þ

while one obtains

�m ¼ ðm� 4Þ=4 and �m ¼ 1þ 2 cosð2�=mÞ; ð10Þ

for m0 being an even number. By using the alternating func-

tions

S ¼ ð�1Þm
0

and M ¼ fm0gmod 2 ð11Þ

in which m0> 3, one can combine both parameter evolutions

into a single set

�m ¼ ðm� 22�MÞ=4 ¼ ðm0 � 1Þ=2
� �

; ð12Þ

�m ¼ 1�M þ 2 cos
2�Mm

2Mm
�

� �� �S

ð13Þ

of formulas, which inherently include the case distinctions.

Eventually, it is observed that all scaling factors �m also

follow an alternative formula, common for both series,

�m ¼ �ði; jÞ ¼
sinði�=jÞ

sinð�=jÞ
; ð14Þ

in which �ði; jÞ denotes the ith out of the bj=2c distinct diag-

onals of a regular j-gon of unit edge length E ¼ �ð1; jÞ ¼ 1

(Fontaine & Hurley, 2006; cf. Fig. 7). Here, the observed value

of j follows the splitting pattern for m0 being an odd or even

number, with j ¼ m=2M , whereas the value of i shows an

individual pattern alternating between a linear increase for the

odd cases and a constant one for the even ones. The para-

meters for the CSCTs up to m ¼ 24 have been collected for

easy reference in Table 1.

As a summary, any given triple fully characterizes a CSCT,

with each parameter on its own determining certain of its

geometrical features: (i) the modulus

m 2 N, denoting the order of the rota-

tion axis, determines the number of twin

domains and the successive angular

inclinations of the spiral branches. (The

number of distinct orientation states,

the twin multiplicity, is only half as big,

since opposite domains share the same

orientation state, see Fig. 1.) (ii) The

multiplier �m 2 N determines the loca-

tion of the inclination points occurring

on a spiral branch, by controlling the

repeat number of alternating steps

occurring in-between the inclination

points. (iii) The multiplier �m 2 R

defines the circumcircle radius RCC of the innermost m-gon, in

relation to the unit moduli along the spiral, together forming a

pair ð�m; 1Þ of multipliers.

3. Discussion

After showing how the CSCTs are generated, a conceptuali-

zation of what has been found is given in the following

discussion, highlighting the CSCTs’ relation to Archimedean

spirals and circle involutes, as well as Z modules.

3.1. Archimedean spiral and circle involute description

Although the spirals used for the description of the CSCTs

are discrete in nature, they can be approximated by contin-

uous curves, which is of particular interest for a more

comprehensive characterization of CSCTs in terms of their

general geometric properties and their large-scale asymptotic

behavior. While a direct interpolation by some general curve

is always possible, it is never unique, thereby limiting deeper

insights (Davis, 1993; p. 34). Instead, it is rather more impor-

tant to note the type of continuous spiral, some common

examples of which are given by Bursill et al. (1987), that will

represent a best fit to the discrete set of spiral nodes P0;‘. The

most common types of spirals, often known since antiquity, are

usually fully described by very few parameters only, thus being

ideal candidates for the aforementioned purpose. A number

of textbooks have compiled information about spirals and

other curves, their construction, properties and applications

(Eagles, 1885; Lockwood, 1961; Zwikker, 1963; Lawrence,

1972; Yates, 1974; Shikin, 1995; Rutter, 2000).

Now, the layer-by-layer growth of the discrete spiral gives

the crucial clue for the unique type of continuous spiral

featuring a constant separation distance between successive

turns, thereby ruling out a kind of spiral similarity symmetry

in the sense of Shubnikov (1961). In fact, two closely related

candidates exist, namely the Archimedean spiral and the

involute of a circle. In the case of the Archimedean spiral

a constant separation distance between consecutive convo-

lutions is observed along rays radiating from its origin,

but with the caveat that the intersections of these rays with

the spiral are not perpendicular. For the involute of the
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Table 1
Parameters for m-fold CSCTs.

Analytical expressions are given where known as well as the minimal polynomials of which �m is a root. For
the meaning of the indices i; j see equation (14).

m �m �m (numerical) �m (analytical) Minimal polynomial i j

6 1 1.000 000 1 1 1 3
8 1 2.414 214 1þ ð2Þ1=2 x2 � 2x� 1 3 8

10 2 1.618 034 ½1þ ð5Þ1=2
�=2 x2 � x� 1 2 5

12 2 2.732 051 1þ ð3Þ1=2 x2 � 2x� 2 3 12
14 3 2.246 980 x3 � 2x2 � xþ 1 3 7
16 3 2.847 759 1þ ½2þ ð2Þ1=2

�
1=2 x4 � 4x3 þ 2x2 þ 4x� 1 3 16

18 4 2.879 385 x3 � 3x2 þ 1 4 9
20 4 2.902 113 1þ ½5=2þ ð5Þ1=2=2�1=2 x4 � 4x3 þ x2 þ 6xþ 1 3 20
22 5 3.513 337 x5 � 3x4 � 3x3 þ 4x2 þ x� 1 5 11
24 5 2.931 852 1þ ½2þ ð3Þ1=2

�
1=2 x4 � 4x3 þ 2x2 þ 4x� 2 3 24



circle, however, a constant separation distance is measured

along common normals of consecutive convolutions of the

curve.

Despite this subtle yet important difference, both curves are

intimately related to one another, and thus can be treated

within a general system of parametric equations, suitably

formulated in matrix-vector form

xðs; tÞ

yðs; tÞ

� �
¼ R T abðs; tÞ

cos t

sin t

� �
; ð15Þ

in which R is a common scalar reference radius, and the matrix

is defined as

T abðs; tÞ ¼
a bðt � sÞ

�bðt � sÞ a

� �
; ð16Þ

with the choice of matrix parameters a, b discriminating the

cases

T 10ðs; tÞ ¼ circle;

T 01ðs; tÞ ¼ Archimedean spiral;

T 11ðs; tÞ ¼ circle involute: ð17Þ

Here, the additional fixed parameter s 2 ½0; 2�� designates a

single spiral’s starting point in terms of a cyclic phase shift. In

particular, the value s ¼ 0 ¼ 2� represents the starting points

ð0; 0Þ and ðR; 0Þ for the Archimedean spiral and the involute

of the circle, respectively, for the parameter t ¼ 0. For spirals

starting at phase angles s 6¼ 0 the parameter t starts from a

shifted starting point, t ¼ s, as well.

In a dynamic perspective an Archimedean spiral is defined

as the locus of a point that moves away from another, fixed

point at uniform linear velocity v (radially) and uniform

angular velocity ! (azimuthally). As a consequence of the

described uniform motion, Archimedean spirals feature a

constant separation distance of 2�R.

In order to obtain the best fit curve, it is actually better to

use a polar plot of a point’s radius vector length r versus its

polar angle �, yielding the simple linear function

rð�Þ ¼ R� þ s ð18Þ

in which the slope R ¼ v=! is given as the quotient of the

radial and azimuthal velocities, and in which the ordinate

intercept s is related to the starting point ðs; 0Þ ¼ ðR�=2; 0Þ.

Since a point in our chosen parametrization is represented by

a complex number, both the radius and the angle have a

simple representation as a point’s complex absolute value and

absolute argument, respectively.

Polar plots for the CSCTs with m ¼ 8; 10; 12 are shown in

Fig. 7 together with their approximations with

R8 ¼ 2:916;R10 ¼ 2:368 and R12 ¼ 3:481 ð19Þ

determined by a simple linear least-squares procedure

(Mathematica).

Note that while the slopes increase in the unnatural order

m ¼ 10; 8; 12, this matches the ascending order of their scaling

factors �10 ’ 1:618, �8 ’ 2:414 and �12 ’ 2:732, respectively.

A plot of the CSCT for the case m ¼ 8 is shown in Fig. 8

together with its circle of radius R ¼ R8, circle involutes for

s ¼ n2�=8 ðn ¼ 0; . . . ; 7Þ and Archimedean spiral for s ¼ 0.

Note that the above parametrization has been chosen so

as to account for a fixed phase shift p ¼ ��=2 between the
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Figure 7
Polar plot r versus � (in radians) for the spirals of modulus m ¼ 8 (red,
middle), m ¼ 10 (green, bottom) and m ¼ 12 (blue, top). Note the
observed simple proportionality r / � (overall, approximate) character-
istic for an Archimedean spiral. Note, also, the broken order in terms of
the value of the slope, with the curve for m ¼ 10 featuring the smallest
value, thereby indicating a non-unique rule for the spiral’s generation.

Figure 8
Discrete spiral pattern of an eightfold CSCT (800 points; blue) together
with its continuous approximation by eight circle involutes (green)
and one Archimedean spiral (red). Highlighted points (red) on the
real number line are the origin, ð0; 0Þ, as well as the points ðR; 0Þ,
ðR�=2; 0Þ and ðR�=2þ 2�R; 0Þ in which R denotes the circle radius
(R ¼ R8 ’ 2:996).



circle involute and the Archimedean spiral, such that any

given pair of a circle involute and its corresponding Archi-

medean spiral can be associated with the same variable phase

shift s, thereby highlighting their asymptotic equivalence for

t!1.

3.2. Z-module description

For a single spiral branch, each node’s position in the

complex plane is, by definition, a linear combination of unit

basis vectors represented by a complex summation over the

roots of unity. By this means a single spiral branch traces a

path in what is known by mathematicians as a Z module, a

higher-dimensional generalization of a lattice (Steurer &

Deloudi, 2009, p. 61; Sirindil et al., 2017). In particular, a Z

module of rank n, existing in a vector space Rd of dimension

d � n, can be described by the set of points

fz1e1 þ z2e2 þ . . .þ znenjz1; z2; . . . ; zn 2 Zg ð20Þ

which form an integer lattice Zn, spanned by n linear inde-

pendent basis vectors ei, in the n-dimensional vector space Rn.

For d ¼ n this describes the special case of a lattice, while

for d< n this corresponds to the projection of a higher-

dimensional lattice in n dimensions into the Z module in d

dimensions.

Now, the generation of the full CSCT structure demands the

additional complex multiplication with all possible roots of

unity !k
m, which leads to the question of whether this relation

to a Z module still holds true for the CSCT as a whole, despite

the occurrence of the central radius vectors �m!
k
m of length

�m > 1 in the parametrization. While it is conjectured to hold

true for general m, for the most interesting cases m ¼ 8; 10; 12

this question can be answered in the affirmative, with a visual

proof given in Fig. 9. Here, the proof consists of finding a

continuous path, solely constructed of unit length segments,

connecting the origin P00 of a single spiral branch with the

origin ð0; 0Þ of the CSCT, and thus, by the action of the m-fold

rotational symmetry, connecting all spiral branches with each

other.

This relation to a Z module implies that every point on a

single spiral branch, with in our case d ¼ 2 real coordinates,

can be indexed (in real space) instead by n integers zi, where

n ¼ 4 for the octagonal, decagonal and dodecagonal cases.

Apart from the formalism this means that the CSCT structures

are exceptionally highly correlated structures, in which every

position is precisely in registry with the underlying Z module.

The Z-module description thus highlights a hidden algebraic

order among the coordinates with the presented para-

metrization by a single formula acting as a quantitative crystal

structure descriptor (Hornfeck, 2012).

Moreover, since all points of the octagonal, decagonal and

dodecagonal CSCTs are located on a Z module, we expect a

possible description of these patterns by means of a higher-

dimensional cut-and-project scheme, as well as their diffrac-

tion patterns to exhibit perfect octagonal, decagonal and

dodecagonal symmetry, arising from the long-range orienta-

tional order present in the point patterns, similar to the crys-

tallography of quasicrystals. Thus, the CSCTs with

m ¼ 8; 10; 12, while not being quasicrystals themselves (and

experimentally discernible from them by the diffraction of a

single domain), share a common characteristic of this special

class of aperiodic crystals. Indeed, they are role models for the

twins proposed by Pauling in his argument against the exis-

tence of quasicrystals.

4. Conclusion

A theoretical study has been made on chiral spiral cyclic twins

with an emphasis on twins of eightfold, tenfold and 12-fold

symmetry generated by the application of a unique integer-

valued inclination function in a parametrization based on

complex roots of unity. The underlying association of each

generated point pattern’s coordinates with those represented

by a Z module highlights the highly correlated nature of this

spatial arrangement, illustrates the importance of hidden

algebraic relations presenting a form of symmetry going

beyond the group-theoretical one, and establishes a connec-

tion to the crystallography of octagonal, decagonal and

dodecagonal axial quasicrystals, respectively.

research papers

Acta Cryst. (2022). A78, 21–35 Wolfgang Hornfeck � Chiral spiral cyclic twins 27

Figure 9
Geometry of the central polygon for the octagonal, decagonal and
dodecagonal twin shown top left, middle right and bottom left,
respectively. Highlighted in each case as open circles are the origin O
as well as the points P00, P10 and P01, whose relative location (in the
graph-theoretical sense) is the same for all depicted cases, as is the
absolute distance of unity between the points P00 and P01. The
circumcircle radii R and edge lengths E differ, however. Note that in
the decagonal case the edge length equals the distance between the points
P00 and P01, and that the circumcircle radii correspond to the respective
scaling factors, R ¼ �m. Points highlighted as solid circles depict unit
distance connections between adjacent spiral branches and to the origin,
with their rotationally equivalent points omitted for clarity. Unit distance
lines are shown with greater thickness.



APPENDIX A
Modeling of chiral spiral cyclic twins

In the following a detailed description of the derivation of the

fundamental formula modeling CSCT structures is given, with

each section discussing specific details of the modeling process.

A1. Two-dimensional model

For the parametrization the focus is laid on a purely two-

dimensional point pattern, acting as an abstract model for the

CSCT structure of NiZr as illustrated in Fig. 1, and obtained

from it by a projection of the structure along the tenfold axis.

This is possible, because the tenfold twin structure of NiZr

is essentially a (2+1)-dimensional structure, with the cyclic

twinning occurring in the plane perpendicular to the tenfold

axis, along which the three-dimensional twin structure is

periodic.

This is similar to the case of axial quasicrystals, in which the

quasiperiodicity also is restricted to a two-dimensional

subspace.

Indeed, a periodicity in the twin plane is only observed

within and strictly limited to any of the ten single twin

domains, while the infinite pattern as a whole is aperiodic. Its

symmetry is restricted to a point group composed of pure

rotations, singling out the origin as a fixed point and implying

the point pattern’s chirality. The pattern’s chirality is reflected

in a spiral arrangement of atoms, akin to the phyllotactic

arrangement of seeds in a sunflower floret, except for the

presence of spirals of one handedness only.

The parametrization can take advantage of the abstract

model’s two-dimensional nature by the use of complex coor-

dinates, in particular using the tenth roots of unity !, defined

by !10 ¼ 1, as basis vectors. Anticipating the general case of an

m-fold twin pattern, a general mth root of unity is given by the

complex number, written in exponential form,

!k
m ¼ expði2�k=mÞ; ð21Þ

in which k runs from zero to m� 1 in order to produce all

distinct roots.

Exponential sums of the general form

SðnÞ ¼
Pn
j¼1

!f ðjÞ
1 ; ð22Þ

in which f ðjÞ is a real-valued function defined on the positive

integers, show a rich variety of geometric forms, including

spiral ones, in plots of all their partial sums up to the given n

(Lehmer & Lehmer, 1979, 1980; Loxton, 1983; Deshouilliers,

1985; Chamizo & Raboso, 2015). Sums of the aforementioned

type are commonly referred to by the name of Weyl sums, as

they feature prominently in the study of uniform distribution

modulo one, as pioneered by Hermann Weyl (Dekking &

Mendèz France, 1981).

In our case, each point located on a single spiral branch of a

CSCT is parametrized by the complex number

�0;‘ ¼ �m!
0
m þ

P‘�1

j¼0

!�ðjÞm ; ð23Þ

obtained by adding the individual contributions of the mth

roots of unity in a consecutive manner. Here, �ðjÞ is a non-

negative-integer-valued inclination function (see below). The

full m-fold point pattern is generated from a single spiral

branch’s points by multiplying the �0;‘ with the appropriate

complex mth root of unity:

�k;‘ ¼ !
k
m�0;‘ ¼ �m!

k
m þ

P‘�1

j¼0

!�ðjÞþk
m : ð24Þ

Here, k and ‘ denote spiral coordinate indices, designating the

‘th spiral node on the kth spiral branch.

Cartesian coordinates ðx; yÞ are obtained as the real and

imaginary parts of the complex number �k;‘, namely as the

two-dimensional point Pk;‘ ¼ ðRe �k;‘; Im �k;‘Þ. Note that

P0;0 is not denoting the origin, but the point (�m, 0).

The real number �m denotes a fixed scaling factor, in

particular �ðNiZrÞ ¼ �10 = ½1þ ð5Þ1=2
�=2 is the golden ratio,

and is chosen such that the distance between consecutive

spiral nodes is unity, including, in the case of NiZr, the edge

length of the central m-gon. Apart from an arbitrary general

scaling factor, not stated explicitly, this choice fixes the model.

Finally, the mirror-symmetric twin of opposite chirality is

obtained by replacing every instance of a complex root of

unity by its complex conjugate counterpart. Here, a plus

(minus) sign in the exponent corresponds to a counter-clock-

wise (clockwise) oriented, right-handed (left-handed) spiral,

following the usual convention (Fan, Peng et al., 1988).

A2. Three-dimensional model

In a realistic three-dimensional model further scaling

factors have to be taken into account, following NiZr’s

orthorhombic unit-cell metrics (Hornfeck, 2018). In addition,

atom types (Ni or Zr) and atom heights (1/4 or 3/4) in the c

direction have to be specified. This can be done as a function

of the two-dimensional spiral coordinates k and ‘ as

atomð‘Þ ¼
Ni for ‘mod 2 ¼ 0

Zr otherwise

�
ð25Þ

zðk; ‘Þ ¼
1

2
þ
ð�1Þf kþ‘ gmod 2

4
: ð26Þ

Notably, the assignment of alternating atomic heights, apart

from creating a two-layer structure, reduces the tenfold

symmetry to a fivefold one. Thus, alternating twin domains

appear flipped, in accordance, however, with a relative shift of

atomic positions by z ¼ 1=2. As is the case for axial quasi-

crystals, the structure can be continued periodically in the c

direction.

A3. Inclination function as a binary case distinction

The inclination function �ðjÞ of equation (23) encodes all

the information about the consecutive coordinate evolution

tracing out a given spiral branch k up to a given spiral node ‘
for a specific CSCT. For the case of NiZr it was empirically

found (Hornfeck, 2018) to be defined as
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�ðjÞ ¼ 2ðj� 1Þ½ �
1=2

� �
þ ½j 2 J �

	 

mod 10

¼ �ðjÞ þ �ðjÞ
	 


mod 10; ð27Þ

with

J ¼ 2½nþ ðnÞ1=2
�

� �
j n 2 N

	 

¼ f4; 7; 10; 12; . . .g: ð28Þ

Here, d�e, b�c and f�gmod � are the integer-yielding ceiling,

floor and modulo functions, respectively, while

½C� ¼
1 if C is true;
0 otherwise;

�
ð29Þ

denotes the Iverson bracket, checking its argument C is true or

false, thus forming a generalization of an indicator function

[see Graham et al. (1994) for the definition and properties of

all integer functions]. In the case of equation (27), the

condition to check for is given by the question of set

membership of the variable j in the set J . The use of the

Iverson bracket allows for an alternative definition of the

complex number

�k;‘ ¼ �m!
k
m þ

Pm�1

i¼0

P‘�1

j¼0

½i ¼ �ðjÞ�!iþk
m ; ð30Þ

in the way that the summation of the complex unit vectors is

not carried out on a consecutive basis, as in equation (23), but

instead by counting the total number of occurrences of a given

ith root of unity !i
m, out of m distinct ones, up to the number ‘

of nodes. Note that the modulo operation can be skipped for

the application of �ðjÞ in the exponent of a complex mth root

of unity [cf. equation (23)], since these form a cyclic group, yet

not in the condition of the Iverson bracket used in equation

(30).

The two summands in equation (27) give rise to the

following sequences:

�ðjÞ ) 0; 1; 2; 2; 2; 3; 3; 3; 4; 4; 4; 4; 4; 5; 5; 5; 5; 5; . . . ; ð31Þ

�ðjÞ ) 0; 0; 0; 1; 0; 0; 1; 0; 0; 1; 0; 1; 0; 0; 1; 0; 1; 0; . . . : ð32Þ

As can be seen from this comparison, the sequence �ðjÞ
defines a baseline, increasing by one at certain steps of

increasing interval length, while the sequence �ðjÞ is alter-

nating between the values of zero and one, in an intricate, yet

certainly not irregular fashion.

Both sequences added (modulo 10) yield the spiral

sequence

�ðjÞ ) 0; 1; 2; 3; 2; 3; 4; 3; 4; 5; 4; 5; 4; 5; 6; 5; 6; 5; . . . ; ð33Þ

the numbers of which, ranging from zero to nine, specify one

out of ten basis vector directions.

The twin model of NiZr was constructed by adhering to

certain geometrical constraints imposed by NiZr’s crystal

structure (Hornfeck et al., 2014). Its parametrization by the

spiral sequence of equation (33) followed only afterwards

(Hornfeck et al., 2018; Hornfeck, 2018) and by empirically

finding the suitable integer sequences for the baseline and

alternating part in the On-line Encyclopedia of Integer

Sequences (OEIS; Sloane, 2018). This has several drawbacks.

First, seen from a technical point of view, the construction of

the alternating sequence could not be made in a direct way, i.e.

the sequence �ðjÞ of equation (32) could not be found in the

OEIS, and accordingly no formula for its generation is yet

known. Only by transforming its information, by stating the

position of ones, and thereby forming another sequence,

encoded in the set J of equation (28), can its description be

allowed in an indirect way.

Second, any generating formula found faces the problem of

being non-unique – usually several immediate alternatives

exist, and, in principle, an infinitude of them. This is, of course,

not a mathematical problem. The description of the spiral

sequence by one formula or another mathematically equiva-

lent one makes no practical difference whatsoever. However,

the conceptual difference is huge, thinking in terms of

explaining not how the formula works, but why it does.

Without knowing this, there seem also no opportunities for

obvious generalizations to other than tenfold symmetric cases.

A4. Inclination function as a binary constant

For the purpose of a more direct generation of the alter-

nating sequence �ðjÞ of equation (32), one idea is to identify it

with a binary number by means of concatenating zeros and

ones according to the set membership condition and in the

order in which they appear in the sequence:

�10 ¼ ð0:000 100 100 101 001 010 . . .Þ2: ð34Þ

The knowledge of �10 then allows for an alternative repre-

sentation of the inclination function as

�ðjÞ ¼ 2ðj� 1Þ½ �
1=2

� �
þ b10j�10c

	 

mod 10: ð35Þ

An analytic expression of the constant �10 is given by the

infinite reciprocal sum [cf. equation (28)]

�b ¼
P1
n¼1

b�d2½nþðnÞ
1=2
�e; ð36Þ

which, after a combination of manual and computer-assisted

(Mathematica) algebraic transformations, evaluates to

�b ¼
ðbþ 1Þ � ðb� 1Þ½b�1=2#2ðb

�2Þ þ #3ðb
�2Þ�

2ðb2 � 1Þ
ð37Þ

in the case of general base b. Here, #iðqÞ is a shorthand

notation for Jacobi’s second and third theta function,

#2ðz; qÞ ¼ 2q1=4
P1
k¼0

qkðkþ1Þ cos½ð2kþ 1Þz�; ð38Þ

#3ðz; qÞ ¼ 1þ 2
P1
k¼1

qk2

cosð2kzÞ; ð39Þ

stated for the special case in which the complex argument z is

equal to zero. The so-called nome q is restricted according to

jqj< 1.

Jacobi theta functions are interrelated by numerous alge-

braic identities, and can be expressed in a multitude of infinite

series and product representations, with a rich number-

theoretic background. In particular, they appear in the closed-

form expressions for similar constants, e.g. for the infinite sums
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of reciprocals of the Fibonacci and Lucas numbers (Borwein

& Borwein, 1987). With the complex argument z being zero,

they also occur in the exact evaluation of lattice sums, of which

the Madelung constant is the most prominent example

(Borwein et al., 2013; Zucker, 2017).

However, the aforementioned approach is still not well

suited for generalization, since for each case it requires the

derivation of another specific constant.

A5. Inclination function as a binary string

In order to generate the alternating sequence �ðjÞ of

equation (32) in a more direct way, we analyze the pattern of

zeros and ones of which the sequence is made. For this

purpose we switch to a representation of the sequence by a

string by concatenating zeros and ones, just as we did for

the representation as a binary number, yet skipping the

leading zero and decimal point. Now, the baseline sequence

[equation (31)] suggests a splitting pattern according to

0j0j010j010j01010j01010j0 . . ., due to the incremental change

of digits and with respect to the interval lengths in between. A

comparison with equation (31) shows that we have the

following multiplicities times digits: 1� 0, 1� 1, 3� 2, 3� 3,

5� 4, 5� 5, and so on. The multiplicities run over the

odd integers, yet with a period of two, which could be high-

lighted by introducing a second marker | at the appropriate

positions: 0j0jj010j010jj01010j01010jj0 . . .. Obviously the

pattern between the markers is very simple – just the alter-

nation of zeros and ones – with ever-increasing odd number

interval lengths while one proceeds along the string. In the

limit of an infinite string this would result in a periodic alter-

nation of zeros and ones, . . . 01 . . ., which could be thought of

the average string underlying the inclination pattern. In a plot

this would just correspond to a rectified ‘spiral’, so any of the

observed differences are really caused by the occasionally

interspersed additional steps preferring one direction over the

other, thereby creating a true spiral and a chiral twin structure.

Now, the average sequence is generated by

h�ðjÞi ¼ ðj mod 2Þ1j¼0 ð40Þ

and it is clear that the need to adjust the sequence, in such a

way that the alternating sequence �ðjÞ is recovered, is

connected to the incremental increase of the baseline

sequence �ðjÞ, in particular to the positions when an incre-

mental step occurs. In these cases the average sequence has to

be shifted/extended by one bit, thereby creating the inter-

mittant . . . 00 . . . repeats. Taking these arguments into account

one finds

�ðjÞ ¼ fj� �ðjÞgmod 2 ð41Þ

as the correct function. Here, the baseline generating function

�ðjÞ ¼ bð2jÞ
1=2
c ð42Þ

was adjusted for an offset of one, in order to let the sequence

start with an index j of zero, as is the case for the average

sequence h�ðjÞi. With this we have

�ðjÞ ¼ f�ðjÞ þ fj� �ðjÞgmod 2gmod 10; ð43Þ

where j starts from zero. This formula has the advantage of

using only simple integer functions, while effectively coupling

the alternating sequence to the baseline one. As such it can be

very simply generalized to

��ðjÞ ¼ f��ðjÞ þ fj� ��ðjÞgmod 2gmod m

¼ j� 2
j� ��ðjÞ

2

 �� �
mod m ð44Þ

with the general baseline function

��ðjÞ ¼ bð�jÞ
1=2
c ð45Þ

and two fixed parameters, a multiplier � and a modulus m.

A6. Properties of the generalized alternating function al(j)

In order to see why

��ðjÞ ¼ fj� ��ðjÞgmod 2 ð46Þ

gives a uniquely alternating sequence of zeros and ones, as a

function of ��ðjÞ, let us use the identity x mod n ¼ x� nbx=nc

and thus

��ðjÞ ¼ j� ��ðjÞ � 2
j� ��ðjÞ

2

 �
: ð47Þ

Since both j and ��ðjÞ are integers by definition [cf. equation

(45)] we can include each of them separately into one of the

two floor functions

�
j� ��ðjÞ

2
� j

 �
�

j� ��ðjÞ

2
þ ��ðjÞ

 �
ð48Þ

and further simplify, by using the identity �b�xc ¼ dxe, to

jþ ��ðjÞ

2

� �
�

jþ ��ðjÞ

2

 �
: ð49Þ

It is now clear that dxe � bxc can only assume the values of

zero (if x is an integer) or one (otherwise), as implied by the

modulo function of modulus two. For the argument

x ¼ ð1=2Þ½jþ ��ðjÞ� to be distinct from an integer, the sum

jþ ��ðjÞ of the integers j and ��ðjÞ has to be odd, which is to

say that either one of the summands has to be odd, while the

other one has to be even. Since j runs consecutively over the

integers, thereby alternating between odd and even values, the

result will be one, whenever ��ðjÞ fails to follow this alterna-

tion, which happens for every other value within the resulting

baseline function’s plateaus.

A7. Properties of the generalized baseline function bl(j)

The core of the presented parametrization is given by the

baseline function ��ðjÞ, which governs the path traced out by

the spiral, in terms of its inclination points and their relative

distance on the spiral arc. As such, this restricts its mathe-

matical properties rather rigorously.

A function under consideration has to adhere to the

following requirements. It has to map an integer input, the

intermediate node index j, to an integer output, the inter-

mediate baseline level, ��:Z! Z. In the presented baseline

function ��ðjÞ this is achieved by the floor function. Further-
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more, the baseline levels have to start at zero and increase

monotonically, so as to represent the increasing radial distance

of a spiral node from the spiral’s origin. The floor function

guarantees a stepwise increase of the baseline levels, thereby

yielding straight spiral segments within each twin domain

[here, we refer to the spiral segments being straight, apart from

the alternating pattern induced by the function ��ðjÞ, which is

disregarded for the sake of argument]. The increase of the

baseline levels has to decrease with increasing intermediate

node index j, since the farther apart a straight spiral segment is

situated, the larger has to be its length, i.e. the relative distance

between consecutive inclination points on the spiral.

Naturally, the combination of these requirements already

rules out many of the fundamental mathematical functions,

while the floored square root function bð�jÞ
1=2
c just happens to

fulfill all of these requirements. This baseline function is a step

function of increment one and plateaus constantly increasing

in their length, due to the monotonously, yet ever more slowly

increasing continuous function ð�jÞ
1=2. The multiplier � is a

constant for any fixed m, but its functional dependence for

varying m has yet to be clarified.

A8. Properties of the generalized baseline parameter l

While the mathematical appearance of the baseline func-

tion ��ðjÞ can be rationalized in a rather straightforward

manner, a physical interpretation of the baseline parameter �
appears to be less evident. In order to get a feeling about its

influence on the twin point pattern one can, however, study its

extremal behavior in the limits �! 0 and �!1.

For the case �! 0 one observes an ever-expanding

length of the straight spiral segments until, at � ¼ 0, the spiral

branch is fully rectified. In this case the baseline function

becomes zero everywhere, ��ðjÞ ¼ 0, which means that the

inclination and the alternating function become equal,

�ðjÞ ¼ �ðjÞ, resulting in a strictly alternating sequence,

�ðjÞ ) 0; 1; 0; 1; 0; 1; . . ., of baseline level values. Upon

increasing � again a single spiral branch with a fixed number

of nodes first gets more curled up, with its winding number

around the origin increasing and its straight segment

perpendicular separation distance decreasing accordingly. At

some point, however, the regularity of the point pattern of a

single spiral branch gets lost, since for �!1 the inclination

sequence defined by �ðjÞ becomes more and more indis-

tinguishable from a random sequence of baseline level values

ranging between zero and m� 1, with any given value

occurring in the sequence with its natural uniform density 1=m

for ‘!1. A single spiral thus eventually transforms into a

random walk about the origin. This behavior is known for the

graphs of the partial sums of exponential sums in which the

phase values of the summands are proportional to a square

root function (Loxton, 1983; Chamizo & Raboso, 2015).

A9. Heuristics for the discovery of yet-unknown triples

Which triples ðm; �m; �mÞ generate a CSCT? One way to

answer this question would be an exhaustive search by

applying a brute-force sampling of the parameter space. Since

point patterns of already rather moderate modulus, say

m> 24, are becoming less and less interesting, due to the

diminishing size of individual twin domains, this task seems

feasible. However, one does not know exactly which, maybe

non-integer, values the multiplier �m might take, and since the

multiplier �m is observed to be an irrational number, any

search by an incremental variation of the parameters will

anyhow only yield an approximate solution, which, in the best

case, could result in an educated guess regarding the ideal

value of this constant. If one assumes a variation of the

parameters in the intervals 0 � p � 101 by an incremental

resolution of ð100; 10�3; 10�3Þ this amounts to roughly 109 trial

cases.

In practice, however, this approach failed not due to any

computational intractability of the search itself, but due to a

lack of algebraic methods for automatic checking of the

geometric regularity of the candidate solutions. A check by

visual inspection, although taking advantage of the supreme

pattern recognition abilities of the human visual system, the

eyes and the brain, proved to be utterly tedious, since the

overwhelming number of trial cases turns out to be far away

from being regular. At least there is a lesson learned here, too:

any parameter triple, if it exists, has to be fine-tuned, since

even the slightest deviations from the ideal parameter values

quickly destroy the geometric regularity of the point pattern.

Instead of an exhaustive approach, a better way seems to be

to find some heuristics for focusing the search on promising

candidates. While the modulus m might simply be chosen to

correspond to some of the known numbers m ¼ 8; 10; 12

occurring for axial quasicrystals, a good guess for the other

parameters is more difficult. However, since �10 is the golden

ratio, one might assume suitable candidates for other �m

factors to be similar well known numbers, possibly occurring

as members of some general number families.

For instance, the golden ratio occurs as the 	ð1; 1Þ-member

of the family of infinite, nested radicals:

	ðd; nÞ ¼ nþ nþ ðnþ . . .Þ1=ðdþ1Þ
h i1=ðdþ1Þ

� �1=ðdþ1Þ

: ð50Þ

On the other hand, the member 	ð2; 1Þ is a constant known

under the name plastic ratio, and both ratios are Pisot–

Vijayaraghavan (PV) numbers, the plastic ratio also being the

smallest such number. A PV number is a real algebraic integer

� greater than unity, all of whose conjugate elements �i have

absolute value less than unity (PV property): �> 1> j�ij> 0.

The PV property proves to be of particular importance in the

theory of quasiperiodic substitution tilings in defining their

self-similar inflation factors and other of their properties, and

thus seems to be a good heuristic for which to check.

Like the golden ratio, the plastic ratio is an algebraic

number, which means that it is a complex (real) root of a non-

zero polynomial in one variable, with rational (integer) coef-

ficients, where the polynomial is usually assumed to be of

minimal degree. The minimal polynomial for the golden ratio

is given by x2 � x� 1 (of degree 2), while the one for the

plastic ratio is given by x3 � x� 1 (of degree 3). Being the root
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of a minimal polynomial of degree two makes the golden ratio

an algebraic number of degree two, and in particular a

quadratic irrational number

ða; b; c; dÞ ¼
aþ bðcÞ

1=2

d
; ð51Þ

in which a; b; c; d are integers, with b; c; d being non-zero and

c being square-free. The property of being a quadratic (or

cubic) irrational number was used to explain the occurrence

of quasicrystals with m-fold rotational order only for

m ¼ 5; 8; 10; 12 (Levitov, 1988). The golden ratio corresponds

to ð1; 1; 5; 2Þ ’ 1:618. The silver ratio, appearing as the self-

similar inflation factor for the octagonal Ammann–Beenker

quasiperiodic tiling, corresponds to ð1; 1; 2; 1Þ ’ 2:414. Both

the golden and the silver ratio are part of a larger series of

metallic ratios of the general form ðn; 1; n2 þ 4; 2Þ, which are

defined by their infinite continuous fraction representation of

nþ
1

nþ 1

nþ . .
.

¼ ½n; n; n; . . .� ¼
nþ n2 þ 4ð Þ

1=2

2
; ð52Þ

or by being a root of the quadratic equation x2 � n x� 1, with

n ¼ 1 and n ¼ 2 corresponding to the golden and silver ratio,

respectively. The next, n ¼ 3, member of the series, repre-

senting the bronze ratio ð3; 1; 13; 2Þ ’ 3:303 has also been

associated with a two-dimensional quasicrystal, of hexagonal

symmetry, formed in simulations of hard-core/square-shoulder

colloidal particles (Dotera et al., 2017; Nakakura et al., 2019).

In general, the inflation factors of quasiperiodic tilings can

be calculated from the tiling’s substitution rules, which relate

the number of tiles before and after an inflation step. The

possibility of repeating an inflation step over and over again

ad infinitum, from an aperiodic finite patch until its ultimate

extension to the infinite plane itself, proves the quasiper-

iodicity of the tiling. The substitution rules can be formulated

as a system of linear equations, with the number of individual

tile multiplicities upon inflation forming a coefficient matrix.

The eigenvalues of this coefficient matrix, being the roots of its

characteristic (possibly minimal) polynomial, encode the

information about the number of tiles after the nth inflation

step, as well as the asymptotic proportions of tiles in the limit

n!1. In this limit only the largest root is dominant and thus

defines the inflation factor.

Despite the general theory for self-similar inflation factors

of quasiperiodic substitution tilings, it is actually not a trivial

task to find the exact values for a given modulus m, for several

reasons: (i) many more tilings are informally known than

formally published, although there exists an extensive mono-

graph (Grünbaum & Shephard, 1987) as well as promising

attempts at an all-encompassing atlas of tilings (Frettlöh et al.,

2020); (ii) no coherent standard seems to exist in reporting the

properties of tilings; (iii) existing results are scattered few and

far between in a large body of literature; (iv) existing results

are hard to search for, since synonymous expressions prevail,

such as substitution factor, expansion factor, deflation factor

or length expansion; (v) values for the inflation factor are not

always stated explicitly.

For certain non-periodic rhombic substitution tilings with

m-fold symmetry, however, Brown (2018) has described an

easy and systematic way of obtaining the characteristic poly-

nomials from Pascal’s triangle (Fig. 10).

For this purpose the triangle is left-justified and sliced

diagonally, with the integers within a slice forming the coef-

ficients, alternating by their sign, of the sought-for polynomial.

For instance, one obtains the following five first polynomials

P6ðxÞ ¼ x� 1

P10ðxÞ ¼ x2 � 3xþ 1

P14ðxÞ ¼ x3
� 6x2

þ 5x� 1

P18ðxÞ ¼ x4
� 10x3

þ 15x2
� 7xþ 1

P22ðxÞ ¼ x5 � 15x4 þ 35x3 � 28x2 þ 9x� 1 ð53Þ

of general formula

PmðxÞ ¼
X�m

i¼0

ð�1Þi
�m þ i

�m � i

� �
x�m�i

ð54Þ

having only positive, real roots. The degree �m of the poly-

nomial is related to the order m of the rotational symmetry of

the twin pattern by m ¼ 4�m þ 2. The scaling factor �m is

given as the square root of the largest polynomial root,

yielding

�6 ¼ 1

�10 ¼ 1:618 033 . . .

�14 ¼ 2:246 979 . . .

�18 ¼ 2:879 385 . . .

�22 ¼ 3:513 337 . . . : ð55Þ

These scaling factors show a linear relationship with �, which

was estimated for the first 100 values to be equal to

�m ’ 0:636 513�m þ 0:326 681 ð56Þ

with a coefficient of determination R2 almost equal to unity.

This approximate linear relationship should facilitate an

interpolation to the scaling factors of intermediate cases for

which m 6¼ 4�m þ 2. Moreover, by using Plouffe’s inverse
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Figure 10
Left-justified Pascal’s triangle with diagonals, some of them highlighted in
distinct colors, used for the calculation of the scaling factor.



symbolic calculator (Plouffe, 1998), we find all these numbers

to be equivalent to

�PT
m ¼

cos½�=m�

cos½ð1=2Þðm� 4Þð�=mÞ�
¼

1

2 sinð�=mÞ
; ð57Þ

thus establishing a relation between �m and m. Here, the

superscript PT denotes the Pascal’s triangle family of tilings.

Since m was related to �m before, the triple of parameters

needed to specify a cyclic twin has effectively reduced to the

choice of a single parameter. This could be �m, as it is the

natural index variable used in the construction before, or m

since it corresponds to the order of the rotational symmetry of

the cyclic twin under consideration. In any case the coupling of

the model’s parameters reduces any arbitrariness in the twin’s

construction.

Another aspect is remarkable. The formula found by

inverse symbolic calculation and subsequent computer alge-

braic simplification is identical to the formula for the

circumcircle radius

RCC ¼
E

2 sinð�=mÞ
ð58Þ

of a regular m-gon of unit edge length E ¼ 1. This relates the

above series of scale multipliers �m to a simple property of the

central polygon of the CSCT.

A drawback of the approach just presented is that it misses

out on the interesting values of m ¼ 8; 12. Thus, for these

cases another solution had to be found empirically.

A10. Further refinement of the baseline function

The investigation of CSCTs with m> 12 is interesting as

well, because quasicrystals with a corresponding higher m-fold

symmetry, for instance m ¼ 18 or m ¼ 24, exist in soft

condensed-matter systems (Dotera et al., 2014). Some general

trends can be inferred from plots of their point patterns (not

shown). On the one hand, the overall appearance of the

CSCTs, expressed by their convex hulls, becomes more and

more indistinguishable from a circle, as is to be expected for a

compounded point pattern consisting of regular polygons with

an ever-increasing number of edges. Individual spiral branches

progressively approximate circle involutes, due to both the

straight spiral segments decreasing in their relative length and

the alternating inclinations differing by a decreasing angle,

respectively. As a consequence, the individual wedge-shaped

twin domains, their facetting and boundaries, become less and

less visually recognizable. On the other hand, the increasing

baseline parameter value �m counteracts the emerging regu-

larity, in that jumps of the baseline function become more

frequent and their sequence more erratic. In summary, the

point patterns appear less regular than those for the cases

m ¼ 6; 8; 10; 12. Eventually, the inclination pattern results in

collisions, thus rendering the approach ultimately futile for

both large m and ‘, respectively. Indeed, it seems rather

remarkable that the approach works perfectly for the cases

m ¼ 6; 8; 10; 12.

The lack of regularity can be attributed to a breakdown

occurring in the spiral sequences going from

�1ðjÞ ) 0; 1; 1; 1; 2; 2; 2; 2; 2; 3; 3; 3; 3; 3; 3; 3; 4; . . .

�2ðjÞ ) 0; 1; 2; 2; 2; 3; 3; 3; 4; 4; 4; 4; 4; 5; 5; 5; 5; . . .

�3ðjÞ ) 0; 1; 2; 3; 3; 3; 4; 4; 4; 5; 5; 5; 6; 6; 6; 6; 6; . . . ð59Þ

to

�4ðjÞ ) 0; 2; 2; 3; 4; 4; 4; 5; 5; 6; 6; 6; 6; 7; 7; 7; 8; . . . : ð60Þ

While for ��ðjÞ, with � ¼ 1; 2; 3 and starting at j ¼ 0, the

pattern can be described according to the rule stated in

equation (5), this is not any longer true for ��ðjÞ with � 	 4.

Replacing the function ��ðjÞ ¼ bð�jÞ
1=2
c with the verbatim

rule, however, restores the regularity. Note that the remaining

parametrization stays the same. The rule of equation (5) can

be cast into an analytic expression, too, by noting the pattern

of deviations, in particular taking into account integer points

on the continuous square root function. Assuming � is an

integer, these points share the general form ðx; yÞ ¼ �ðj2; jÞ. It

turns out that, for the rule of equation (5) to hold true, these

points can be taken as support for a continuous, piecewise

linear substitution of the continuous, smooth square root

function by a family of integer-parametrized lines (Fig. 11).

It happens that for every interval ½�j2; �ðjþ 1Þ2� the

segment of the line exhibiting the smallest slope connects the

supporting points. Taking the floor function on these piecewise

linear segments as baseline function

��ðjÞ ¼ min
1

2nþ 1
jþ

�ðn2 þ nÞ

2nþ 1

� �bj=�c
n¼0

$ %
ð61Þ

restores the regularity of the twin structure, as, for instance, in

�4ðjÞ ) 0; 1; 2; 3; 4; 4; 4; 5; 5; 5; 6; 6; 6; 7; 7; 7; 8; . . . : ð62Þ

research papers
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Figure 11
The first five square root functions ð�jÞ1=2 (red) with � ¼ 1; 2; 3; 4; 5
(counted from below) and their piecewise linear approximations (green)
shown together with the limiting line �0� ¼ j (blue). The prime highlights
that the plots depict the argument of the baseline function �� before
performing the floor operation.



Now, by the rule of equation (5), the meaning of a preferen-

tially integer baseline parameter � as a repeat period becomes

obvious.

A11. Interpretation: the case for odd moduli

The CSCT models developed so far share a common feature

in that their twin modulus m is always an even number. While

odd moduli are not excluded by the mathematical rules of

CSCTs, they are troublesome with respect to the stereo-

chemistry of the CSCTs. Decorated CSCTs as illustrated in

Fig. 1 are incompatible with odd moduli, since they cause a

geometrical frustration between atoms located at the twin

domain boundary following a spiral’s full turn. Such a

geometrical frustration cannot be resolved even by consid-

ering the presence of a screw dislocation, which would, in

principle, allow for a recovery of the cyclic periodicity of the

alternating twin domains after two full turns instead of one,

yet also yield another geometrical frustration, now created

between twin domains of alternating polarity along the

dislocation axis. Accordingly, a spiral growth model that has

been constructed based on the rhombic Penrose tiling

(Baranidharan, 1990) does not take into account any atomic

decoration of its tiles.

Apart from this the observed dichotomy of two series

existing for �m, as described in the main part of this work,

makes it seem advantageous to consider the fundamental twin

modulus not being equal to m, but rather to m0 ¼ m=2 instead,

for the following reasons: (i) if m0 is taken to be of funda-

mental importance, the lower limit of m0 ¼ 3 becomes

meaningful, since an equilateral triangle is the regular polygon

with the smallest possible number of vertices; (ii) the classi-

fication into two series indexed by odd and even m0 is

emphasized; (iii) CSCTs for which m is an odd number are

excluded, just by definition; (iv) if CSCTs are decorated with

distinct atoms of alternating z coordinates, thereby forming

alternating twin domains breaking the m-fold rotation

symmetry, the number m0 reflects the reduced order of the

point group after the symmetry reduction. This makes m0

appear to be the more natural parameter to consider.
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and Michal Dušek for his endorsement.

Funding information

This work was supported by the Czech Science Foundation

through research grant No. 18-10438S.

References

Adler, I., Barabe, D. & Jean, R. V. (1997). Ann. Bot. 80, 231–244.
Andersson, S. (1983). Angew. Chem. Int. Ed. Engl. 22, 69–81.
Andersson, S. & Hyde, B. G. (1982). Z. Kristallogr. 158, 119–131.
Andersson, S. & Stenberg, L. (1982). Z. Kristallogr. 158, 133–139.

Baranidharan, S. (1990). Pramana – J. Phys. 35, L593–L598.
Borwein, J. M. & Borwein, P. B. (1987). Pi and the AGM: a Study in

Analytic Number Theory and Computational Complexity, Section
3.7, pp. 91–101. New York: Wiley.

Borwein, J. M., Glasser, M. L., McPhedran, R. C., Wan, J. G. &
Zucker, I. J. (2013). Lattice Sums Then and Now. Cambridge:
Cambridge University Press.

Brown, K. (2018). Non-Periodic Tilings With N-fold Symmetry,
https://www.mathpages.com/home/kmath539/kmath539.htm.
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