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Powder diffraction and pair distribution function (PDF) analysis are well

established techniques for investigation of atomic configurations in crystalline

materials, and the two are related by a Fourier transformation. In diffraction

experiments, structural information, such as crystallite size and microstrain, is

contained within the peak profile function of the diffraction peaks. However, the

effects of the PXRD (powder X-ray diffraction) peak profile function on the

PDF are not fully understood. Here, all the effects from a Voigt diffraction peak

profile are solved analytically, and verified experimentally through a high-

quality X-ray total scattering measurement on Ni powder. The Lorentzian

contribution to the microstrain broadening is found to result in Voigt-shaped

PDF peaks. Furthermore, it is demonstrated that an improper description of the

Voigt shape during model refinement leads to overestimation of the atomic

displacement parameter.

1. Introduction

Determination of the atomic configuration within crystalline

materials is of huge interest for the development and opti-

mization of modern functional materials. Every characteristic

of a material, such as chemical reactivity, atomic movement,

electronic properties, thermal properties or interaction with

electromagnetic radiation, is ultimately governed by the

structure. Probing the structure of a material can be carried

out in a non-destructive manner through diffraction techni-

ques, such as powder X-ray or neutron diffraction (PXRD or

PND).

The coherently scattered intensity observed when shining

X-rays or neutrons onto a crystalline powder can be separated

into two major categories: (i) the Bragg scattering from the

spatial and time-averaged crystalline structure and (ii) the

diffuse scattering due to deviations from the average. Bragg

scattering from powders has been used for structural analysis

for many decades with well established analysis techniques

such as Rietveld refinement (Rietveld, 1969). Diffuse scat-

tering, on the other hand, is typically orders of magnitude less

intense than Bragg scattering and has only more recently been

subjected to quantitative analysis.

Structural analysis using the pair distribution function

(PDF) incorporates both the Bragg and diffuse scattering. The

PDF is obtained by Fourier transformation of the total scat-

tering (TS) pattern and is intuitively interpreted as a histo-

gram of interatomic distances containing information on both

the average structure and deviations. The deviations are often

local effects observed in the short-range region of the PDF.

Consequently, PDF analysis has been very successful for

determining atomic configurations in nanomaterials and

glasses where long-range order is limited (Bøjesen et al., 2016;
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Christiansen et al., 2020; Billinge, 2019; Keen, 2020). Current

state-of-the-art instruments for collecting TS patterns include

dedicated synchrotron X-ray and neutron time-of-flight

(TOF) beamlines.

In reciprocal space (q space), the Bragg scattering is

concentrated in diffraction peaks due to the long-range

structural order. The widths of the Bragg peaks, and how they

are altered by different broadening effects, are quite well

understood. In direct space (real space or r space), however,

the long-range effects on the PDF peaks are only partially

understood, especially regarding non-constant and non-

Gaussian broadening contributions to the diffraction peak

profile. Appreciation of these effects is important for correct

data treatment during structural modelling. One case is the

inherent asymmetry of neutron TOF diffraction peaks which

results in r-dependent PDF peak shifts (Jeong et al., 2005; Olds

et al., 2018). In this study, we present the effects of symmetric

Voigt-shaped diffraction peaks on the PDF, which is the most

common peak shape for Bragg scattering in a total X-ray

scattering experiment.

2. Bragg scattering peak shape function

In the ideal case of an infinitely large crystal and a perfect

instrument, the Bragg scattering will assume the shape of a

Dirac � function. In an actual experiment, however, the

observed peaks will be broadened to a finite width due to a

combination of sample and instrumental effects.

Sample Bragg peak broadening effects primarily stem from

two contributions: crystallite size and microstrain (Keijser et

al., 1982; Jiang et al., 1999). For samples where both effects are

present, the Williamson–Hall method can be used to distin-

guish the two (Williamson & Hall, 1953). Crystallite size

broadening can be characterized by the Scherrer equation

(Langford & Wilson, 1978; Dinnebier & Billinge, 2008). This

equation states that the size broadening of a Bragg peak is

inversely proportional to the average crystallite thickness of

the coherent crystallographic domain perpendicular to the

direction represented by the Bragg peak. Specifically, the peak

integral breadth1 � follows a 1= cos � dependency with

magnitude given by a shape factor K, crystallite thickness L

and wavelength �. For spherical crystallites with the same

thickness in all directions, the relation can simply be written as

�� ¼
K�

L cos �
:

The Scherrer equation is applicable for crystallite thicknesses

from about 100 nm down to a few nm. For larger crystallites,

the broadening effect is negligible and other contributions will

dominate the peak shape. For smaller crystallites, the defini-

tion of Bragg scattering breaks down and the scattering must

be described by other means, such as the Debye equation

(Scardi & Gelisio, 2016; Moscheni et al., 2018). The Scherrer

equation above is expressed in angular space. By applying the

transformation equation from angular to reciprocal space,

given by dq ¼ ð4�=�Þ cos �d�, the Scherrer equation in reci-

procal space is obtained as �q ¼ 4�K=L. This demonstrates

that size broadening is constant in reciprocal space. Empirical

observations show that size broadening is primarily Lorent-

zian in nature (Weidenthaler, 2011).

The second sample broadening effect is microstrain. To first

approximation, it arises when the unit-cell size is not identical

for every cell, which can be observed in crystalline structures

with defects, such as interstitial atoms or dislocations

(Rodrı́guez-Carvajal et al., 1991; Kanno et al., 2021). In this

case, the diffraction conditions will be fulfilled in slightly

different directions in different regions of the crystallite,

resulting in peak broadening with a tan � dependency

(Dinnebier & Billinge, 2008). Intuitively, the broadening has

to be larger at higher angles since peak positions in angular or

reciprocal space become increasingly sensitive to the unit-cell

dimensions. The transformation equation can be applied to

obtain a reciprocal-space dependency of �q / q, i.e. a linear

dependency on the reciprocal-space coordinate q. Microstrain

broadening can be both Gaussian and/or Lorentzian in nature

(Stephens, 1999).

Instrumental broadening effects stem from several contri-

butions, which are all dependent on the experimental para-

meters. These include the monochromaticity and coherence

length of the incident beam, the geometry of diffraction,

the spatial profile of the beam, the detector resolution, and

the projection of the illuminated sample volume on the

detector.

In principle, all of the sample and instrumental broadening

contributions can be accounted for during data modelling by a

fundamental parameters approach (Mendenhall et al., 2015).

In many cases, however, a phenomenological approach is

taken instead, where the observed peak shape is described

using a pre-selected function with appropriate angular or q-

space dependencies. Through empirical observations, the

Voigt function, which is a convolution between a Gaussian and

a Lorentzian function, has been proven most suitable for

Bragg scattering peak profiles in PXRD experiments (Lang-

ford, 1978; Young & Wiles, 1982).

The Voigt function is challenging to employ during data

modelling due to the numerical requirements of computing

convolutions. Historically, it has been approximated by the

pseudo-Voigt function, which is a linear combination rather

than a convolution. In 1987, Thompson, Cox and Hastings

(Thompson et al., 1987) defined a unique pseudo-Voigt peak

shape function with five different peak profile parameters,

three of them taking size and strain broadening into

account. Their pseudo-Voigt function was parameterized such

that the Gaussian and Lorentzian contributions could be

easily separated, which meant that the refined peak profile

parameters were directly relatable to physical parameters,

such as crystallite size and strain. For this reason, the

Thompson–Cox–Hastings (TCH) pseudo-Voigt peak profile

function has become exceedingly commonplace in model

refinement against PXRD data. Its definition can be seen in

the supporting information.
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1 The peak integral breadth � is the total area under the peak divided by the
maximum intensity. For a Lorentzian peak, it is proportional to the full width
at half-maximum (FWHM) through � = ð�=2ÞFWHM (Weidenthaler, 2011).



However, with the advent of modern computers and better

algorithms for constructing peak shapes (Coelho et al., 2015;

Coelho, 2018), the pseudo-Voigt approximation is no longer a

necessity. For studying the effects of common diffraction peak

shapes on the PDF, we will thus invoke the full Voigt peak

shape in both the analytical derivation and experimental

investigation.

3. Voigt diffraction peak profiles

The Voigt function is a convolution between a Gaussian and a

Lorentzian function with individual width parameters, �q and

�q, respectively. The subscript q denotes the reciprocal-space

width and the function is defined as

Vðq; �Þ ¼ Gðq; �qÞ � Lðq; �qÞ:

To incorporate the effects of size and strain broadening, the

widths are given by a sum of a constant term K and a linear q-

dependent term �. For the Gaussian function, the two terms

must be added in quadrature. The sums are given below and

the subscripts G and L denote contributions to the widths of

the Gaussian and Lorentzian functions, respectively:

�2
q ¼ K2

G þ �
2
Gq2

�q ¼ KL þ �Lq:

Here, �q is the ‘standard deviation’ of the Gaussian function

while �q is the half width at half-maximum (HWHM) of the

Lorentzian function. The two constant terms (KG and KL) are

related to size-broadening effects and the two linear terms (�G

and �L) are related to strain-broadening effects. The four

parameters are directly relatable to the parameters of the

TCH peak profile function by considering the transformation

from angular to reciprocal space. The constant terms KG and

KL correspond to the Z and Y parameters, which are the

1= cos �-dependent Gaussian and Lorentzian TCH para-

meters, respectively. The linear contributions (�G and �L)

correspond to the U and X parameters, which are the tan �-
dependent Gaussian and Lorentzian TCH parameters,

respectively.

Considering the effects on the PDF, three out of four

parameters are well understood, at least in the approximation

of solely Gaussian or Lorentzian diffraction peaks. In the case

of constant peak profiles in q, Gaussian or Lorentzian, a

powder diffraction pattern can be interpreted as a convolution

between intensity-weighted �-functions and the peak profile

function. This makes the Fourier convolution theorem

applicable. The theorem states that the Fourier transform of a

convolution is equal to the product of the Fourier transforms

of the convolved functions. The Fourier transform of the

intensity-weighted �-functions corresponds to the ‘ideal’ PDF

without any peak damping or broadening other than from

atomic vibration, and the Fourier transform of the constant

peak profile function is essentially an envelope function that

damps the ‘ideal’ PDF. Additionally, the Fourier convolution

theorem also explains the effect of the limited experimental

range of qmax: The range can be imposed on a powder pattern

by multiplication with a Heaviside function, which then causes

the PDF to be convolved with its Fourier transform, i.e. a sinc

function.

For a constant Gaussian peak profile (KG > 0, KL, �G,

�L ¼ 0), the Fourier transform is also a Gaussian. This type of

damping is well known and, for instance, parameterized with

Qdamp in the popular PDF refinement software PDFgui

(Farrow et al., 2007). For a constant Lorentzian peak shape

(KL > 0;KG; �G; �L ¼ 0), the Fourier transform is an expo-

nentially decaying function. Because of the Lorentzian nature

of size broadening, this type of damping can be characterized

with a size-determining parameter during PDF refinement.

The size parameter sp-diameter in PDFgui closely approx-

imates an exponential damping.

Unfortunately, the Fourier convolution theorem is not

applicable to linearly broadened peak profile functions, as the

powder diffraction pattern can no longer be expressed as a

convolution because of the non-constant peak profiles.

Instead, the Fourier transform has to be performed by

hand. In a note by Thorpe et al. (2002), the transformation is

carried out for a linearly broadened Gaussian peak profile

(�G > 0;KG;KL; �L ¼ 0) with some minor approximations to

show that the corresponding PDF peaks will be Gaussians

broadened by ð�2
0 þ �

2
Gr2Þ

1=2. Here, �0 is the constant and

‘intrinsic’ PDF peak width from atomic vibrations, commonly

described by the Debye–Waller factor in reciprocal space. The

second term, �Gr, is the linear dependency for the Gaussian

width in reciprocal space multiplied with the direct-space

coordinate r. This effect is parameterized with Qbroad in

PDFgui.

The PDF peak broadening from a linearly broadened

Lorentzian peak profile function (�L > 0;KG;KL; �G ¼ 0) has

not been previously reported in the literature. Neither has the

effect of a combination of Gaussian and Lorentzian diffraction

peak profiles. Inspired by the approach taken by Thorpe et al.

(2002), the Voigt function defined herein with four peak width

dependencies has been used to derive the full effects on the

PDF. The derivation is shown in Appendix A.

4. Effect on the pair distribution function

In reciprocal space, the TS structure function SðqÞ can be

expressed as an integral of the ‘ideal’ structure function S0ðqÞ

and the reciprocal-space peak profile broadening function

Cðq; q0Þ:

S qð Þ ¼
R

S0ðq
0ÞCðq; q0Þ dq0:

In cases where Cðq; q0Þ only depends on q and q0 as ðq� q0Þ,

the integral will be a convolution, but this is not otherwise the

case. The effect on the PDF can be written as a similar integral

in direct space, where the ‘ideal’ PDF G0ðrÞ is modified by the

direct-space function 	ðr; r0Þ:

GðrÞ ¼
R

G0ðr
0Þ	ðr; r0Þ dr0:

The relation between Cðq; q0Þ and 	ðr; r0Þ is given by the

following expression:
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	ðr; r0Þ ¼
1

2�

Z Z
q

q0
Cðq; q0Þ expðiq0r0Þ expð�iqrÞ dq dq0:

The function 	ðr; r0Þ has been derived in the case of a Gaussian

and Lorentzian diffraction peak profile in Appendix A. The

results can be simplified to give two types of effects: an r-

dependent damping and an r-dependent broadening of PDF

peaks. The nth peak of the PDF, PnðrÞ, positioned around rn, is

damped by DðrnÞ and convolved by Bðr� r0; rnÞ according to

Pn rð Þ ! DðrnÞ
R

Pnðr
0ÞBðr� r0; rnÞ dr0;

where the damping and broadening functions are summarized

in Table 1.

It can be noted that the constant terms KG and KL only

contribute to damping while the linear terms �G and �L only

contribute to broadening. To provide an intuitive overview of

the damping and broadening on the PDF, the effects of the

individual width-determined parameters are visualized in Fig.

1. Note that the four effects are primarily long range but, for

demonstrative purposes, have been highly exaggerated in Fig.

1. In Fig. 1(a), the ‘ideal’ PDF is shown, where isotropic and

uncorrelated thermal motion of the atoms is assumed. Here,

there is zero damping and the PDF peak profile is Gaussian

with a constant width �0 solely determined by the Debye–

Waller factor. In Fig. 1(b), the PDF peaks are damped by a

Gaussian envelope due to constant Gaussian diffraction peaks.

The peak width is still governed by the Debye–Waller factor.

In Fig. 1(c), the PDF peaks are damped by an exponentially

decaying envelope function, corresponding to the Fourier

transform of a constant Lorentzian peak profile, and the peak

widths are still solely determined by the Debye–Waller factor.

In Fig. 1(d), the effect of a linearly broadened Gaussian

diffraction peak profile is shown. The PDF peaks become

increasingly wider with r in a Gaussian manner. Each peak can

be described by a convolution of the ‘ideal’ peak profile and

the �G-dependent peak profile, which totals a peak width of

�2
r ¼ �

2
0 þ �

2
Gr2

n for a peak positioned at rn. Even though the

maximum intensity of peaks at high r is decreased, there is no

peak damping as the integral of every peak is equal to that of

the ‘ideal’ PDF. The area remains directly proportional to the

atomic coordination number and is affected by neither the

Debye–Waller factor nor the peak broadening function. In Fig.

1(e), the effect of a linearly broadened Lorentzian diffraction

peak profile is shown. In this case, the peak widths increase

with r in a Lorentzian manner and the peak shape is a

convolution between a Gaussian and a Lorentzian, i.e. a Voigt

function. Again, the total area is equal

to that of the ‘ideal’ PDF. The total

width cannot be easily represented

analytically but a good approximation

to the FWHM of a Voigt peak is shown

in the supporting information (Olivero

& Longbothum, 1977).

In essence, the broadening from

a linearly broadened Gaussian or

Lorentzian diffraction peak profile will

cause an ‘extra’ broadening to the PDF

peaks, which is most pronounced at high
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Table 1
Damping and broadening effects on the PDF by either a Gaussian or Lorentzian peak profile
function.

Diffraction peak shape Effect on PDF peak positioned at rn

C(q, q0) Damping D(rn) Broadening B(r � r0, rn)

Gaussian 1

2��2
qð Þ

1=2 exp �ðq�q0 Þ2

2�2
q

h i
�2

q ¼ K2
G þ �

2
Gq2 exp

�r2
nK2

G

2

� �
exp �ðr�r0 Þ2

2�2
G

r2
n

h i
Lorentzian 1

�

�q

ðq�q0 Þ2þ�2
q

�q ¼ KL þ �Lq expð�KLrnÞ
�Lrn

ðr0�rÞ2þ�2
L

r2
n

Figure 1
Demonstration of the effects of the individual Voigt peak profile
parameters on the PDF. The effects have all been highly exaggerated such
that they are visible for the first short-range PDF peaks.



r. Surprisingly, in the case of a linearly broadened Lorentzian,

the resulting PDF peaks are Voigt functions. This result can

also be generalized to the case of a Voigt diffraction peak

profile with both Gaussian and Lorentzian contributions, as

shown in the derivation in Appendix A.

The Voigt shape of PDF peaks is important for performing

accurate structural analysis in the case of strained crystalline

materials, since microstrain effects result in significant linear

Lorentzian broadening. To demonstrate this, the case of a Ni

powder with a significant amount of microstrain is presented

in Figs. 2 and 3.

In Fig. 2, the TS pattern from Ni is shown alongside the

Rietveld model. The diffraction peak profiles were found to be

most adequately described by the two peak profile parameters

�G and �L, which demonstrates that the Ni crystallites are

subject to a significant degree of microstrain. The Gaussian

and Lorentzian contributions were approximately equal and

an adequate peak profile could not be found by only one or

the other. The constant contributions refined to negligible

values when included in the model, and were therefore set to

zero. The good agreement factor (low Rwp) and high visual

conformity show that the model is adequate. The primary

difference between the model and data, especially around the

first two peaks ([111] and [200]), is attributed to stacking faults

in the cubic close-packing of Ni (Longo & Martorana, 2008;

Soleimanian & Mojtahedi, 2015). The two peaks exhibit
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Figure 2
Rietveld refinement results for a Ni powder using a Voigt diffraction peak profile. The reported Voigt peak profile parameters (K�G;K�L; �

�
G; �

�
L) are the

corresponding FWHM parameters used in the definition of the Voigt function. These were chosen for modelling rather than the ‘standard deviation’ and
HWHM to make their refined values directly comparable. See Table S1 for all refined values and for the relation between ðK�G;K�L; �

�
G; �

�
LÞ and

ðKG;KL; �G; �LÞ. The value of Uiso was calculated from the refined value of Biso using Uiso ¼ Biso=8�2.

Figure 3
Direct-space refinements of Ni powder using (green line) the Gaussian model with the parameters Qdamp and Qbroad as defined in PDFgui and (red line)
the Voigt model with FWHM parameters as defined in Table 1. See Table S1 for all refined values.



slightly different shapes, which was not accounted for in the

structural models.

The corresponding Ni PDF and two different refinement

models are illustrated in Fig. 3. The two models are (green) a

Gaussian model with the conventional parameters Qdamp and

Qbroad, as defined in PDFgui, and (red) a Voigt model with the

�G and �L parameters corresponding to linearly broadened

Voigt diffraction peak profiles, as shown in Table 1. In the

Voigt model, the two damping parameters KG and KL were

initially included but the refined values were negligible, which

is consistent with the result from the Rietveld refinement.

They were subsequently excluded from the model.

As seen by the substantial improvement in agreement

factor Rwp, the Voigt model describes the PDF to a much more

satisfactory degree than the Gaussian model, even though the

same number of parameters were applied. This is testimony to

the Voigtian shape of the PDF peaks. Furthermore, the refined

atomic displacement parameters (ADPs) U iso are significantly

different between the two models. The value in the Voigt

model [U iso = 33.6 (1) � 10�4 Å2] is quite similar to the one

found from the angular space Rietveld refinement [Uiso =

31.5 (2) � 10�4 Å2], while the value in the Gaussian model

(i.e. PDFgui model) is approximately 30% larger [Uiso =

42.4 (2) � 10�4 Å2]. It was recently found that for a Si powder

sample (Beyer et al., 2021), Uiso was reproducible in direct

space to the values found in reciprocal space when appro-

priate correlated motion and PDF peak profile parameters

were employed. This suggests that the value of Uiso in the

Gaussian model is significantly overestimated as a direct

consequence of the faulty PDF peak profile description. The

model incorporates the missing Lorentzian peak broadening

by increasing the thermal parameter.

To investigate the impact of Voigt-shaped PDF peaks

further, refinements of the two models have been carried out

in direct-space ranges with varying lengths. The start point of

all ranges was set to 1.0 Å and the end point was varied

from 10.0 to 270.0 Å. Selected refinement results are shown in

Fig. 4.

In Fig. 4(a), the agreement factors of the Gaussian model

are shown to be better at short ranges but those of the Voigt

model become superior at long ranges above 80.0 Å. This is

also corroborated by the overestimated value of Uiso in all

ranges and the drop-off in the scale factor for the Gaussian

model [Figs. 4(c) and 4(b), respectively]. These two effects

cause the peaks in the Gaussian model to become broader and

have a lower maximum intensity, which is exactly what is

expected from a Gaussian shape refined against peaks with a

Lorentzian contribution.

Notably, the overestimation of the Uiso in the Gaussian

model is significant already at the first few ranges, which is

testimony to the improved accuracy of the Voigt model for

extraction of physical parameters, even at low r. This holds

despite the fact that the agreement factors of the Gaussian

model are better at these ranges. It should be noted, however,

that the width-determining parameters [ðUiso; �1;QbroadÞ and

ðUiso; �1; �G; �LÞ for the Gaussian and Voigt model, respec-

tively] are strongly correlated at short ranges, meaning that

the refined values, even for the Voigt model, could be inac-

curate. Nevertheless, rigorous testing of the two models at

short ranges showed that the refined values of Uiso from the

Gaussian model were categorically higher than from the Voigt

model. These results illustrate the importance of correct PDF

peak profile description for obtaining accurate structural

parameters, especially in the case of microstrained crystalline

systems.

5. Discussion

The long range and high resolution of the total X-ray scat-

tering data allow for direct comparison between values from

the angular/reciprocal- and direct-space refinements. This begs

the question of when and whether the direct-space values will

converge on those extracted from Rietveld refinement. As

seen in Fig. 5(a), the lattice parameter does not converge

before a range up to 60.0 Å independent of the chosen model.

The Gaussian and Lorentzian broadening parameters of the

Voigt model converge at around 150.0 Å [Fig. 5(b)], as does

the scale factor [Fig. 4(b)]; but the value of U iso from the Voigt

model [Fig. 4(c)] only flattens out for the last few, long ranges

above 240.0 Å.
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Figure 4
Refinement results for the two PDF models using varying ranges. The horizontal axes contain the end points of the ranges. (a) Agreement factors for the
Gaussian (filled green triangles) and Voigt (filled red circles) models. (b) Scale factors for the Gaussian and Voigt models. (c) Atomic displacement
parameters U iso for the two models. The dashed grey line represents the value found from Rietveld refinement. Refinement results for the correlated
motion parameters are seen in Fig. S1(a).



Notably, the values of U iso and lattice parameter a obtained

from the Rietveld and the full-range Voigt PDF model

refinement do not completely agree, as seen by the systematic

deviation from the dashed lines in Fig. 4(b) and Fig. 5(a),

respectively. The discrepancy of Uiso may be explained by the

presence of thermal diffuse scattering (TDS) under the high-

order Bragg reflections in the TS pattern (Willis & Pryor,

1975). The additional intensity from TDS will cause the

Rietveld model to underestimate the value of ADP to cause a

lower damping at high angles. In contrast, the two types of

scattering, Bragg and diffuse, are separated in the PDF since

the diffuse scattering will only contribute to the low-r region.

The value of Uiso = 33.6 (1) � 10�4 Å2 found from the full-

range PDF model is therefore decoupled from the effects of

TDS, which explains the higher value compared with the

Rietveld refinement. The discrepancy between the PXRD and

PDF lattice parameters may be attributed to the inclusion of

line shift parameters in the Rietveld refinement. The sin �-
dependent shift parameter is highly correlated with the lattice

parameter (87%), meaning that the refined value might

deviate from the true value. In the PDF refinement, no

parameters were included to account for the line shift. The

assumption that the two parameters should be equal across the

two spaces may therefore not be applicable. Nonetheless, a

second Rietveld model, where the lattice parameter was

fixed to the value found from the full-range Voigt PDF

model, was refined against the TS data. The agreement factor

changed slightly from 4.90% to 4.91%, and only minute

changes in other parameters were observed. Results are

reported in Table S1.

According to the analytical derivation, the values of ��G and

��L stated in Figs. 2 and 3 should be equal across the two spaces

if the peak profiles were perfect Voigt functions. This is of

course not the case since the Voigt shape is merely an

empirical observation and not necessarily the inherent peak

profile of the TS pattern. Furthermore, structural effects, such

as stacking faults or anisotropic morphologies (Longo &

Martorana, 2008; Beyer et al., 2020), may cause alteration of

the peak shape along specific crystallographic directions.

Alternating peak shapes are not accounted for in the deriva-

tion presented herein. The difference between ��G and ��L for

the Ni PXRD and PDF models, which is most pronounced in

the switching between primarily Gaussian in the PXRD

(��G >�
�
L) to primarily Lorentzian in the PDF (��G <�

�
L), could

originate from either of these effects. The disagreement

between the two remains a challenge for performing a

combined PXRD and PDF dual-space analysis, where a single

set of parameters would be employed for both the angular and

direct-space data.

The Voigtian shape of PDF peaks is not described in the

literature or incorporated in commonplace refinement

programs known by the authors. It has been overlooked for

three reasons: (i) the Lorentzian contribution to diffraction

peak profiles is often constant or negligible. For a constant

contribution, the effect will be a damping that does not affect

the PDF peak shape. For a negligible contribution in reci-

procal space, the effect is also negligible in direct space. (ii)

The Voigt shape is most pronounced at high r since the

broadening scales linearly with r. The instrumental broad-

ening in a TS experiment is typically so severe that the PDF

diminishes at relatively low r. Also, many PDF studies are

carried out on nanomaterials, where the crystalline size

broadening terminates the PDF at low r. (iii) The PDF peak

shape at high r is difficult to infer from visual inspection due to

extensive peak overlap. Even for a well resolved, high-range

PDF with a significant Lorentzian contribution, the inade-

quacy of a Gaussian description may be difficult to deduce.

The shortcomings of the Gaussian model for the Ni PDF

presented herein can be generalized to any material that

exhibits microstrain. During typical refinement of a PDF

model, the two Gaussian parameters Qdamp and Qbroad are

fixed to the instrumental values found by refinement of a

calibrant PDF, often from a LaB6, CeO2, or even Ni powder.

An obvious challenge with this procedure is that the Qbroad

parameter may be significantly affected by both Gaussian and

Lorentzian microstrain effects from the sample itself. If the

microstrain is Gaussian, then it will be entirely described by

Qbroad, which requires inclusion of Qbroad as a refinement

parameter. If the microstrain broadening is Lorentzian, or a

mix between the two, the Qbroad parameter will try to
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Figure 5
Refinement results from the two PDF models using varying ranges. The horizontal axes contain the end points of the ranges. (a) Lattice parameter a from
the Gaussian (filled green triangles) and Voigt (filled red circles) models. The dashed grey line represents the value found from Rietveld refinement. (b)
Peak profile parameters ��G and ��L (open and filled red triangles, respectively) by their FWHM definitions from the Voigt model. (c) Qdamp (filled green
squares) and Qbroad (open green triangles) parameters from the Gaussian model.



encompass the Lorentzian broadening. As demonstrated

herein, this can lead to inaccurate ADPs.

6. Conclusions

The effects of a Voigt diffraction peak profile in a TS pattern

on the corresponding PDF have been solved analytically.

Linear Lorentzian broadening, typically present in crystalline

materials with a significant amount of microstrain, was shown

to cause Voigt peak shapes in the PDF. This was verified

experimentally from high-quality TS data from a Ni powder.

PDF model refinement using the conventional Gaussian PDF

parameters, Qdamp and Qbroad, was shown to cause a significant

overestimation of the ADPs compared with the value

obtained in reciprocal space. A Voigt model, which takes the

Lorentzian contribution into account, was successful in

reproducing the reciprocal-space value. By refining the

Gaussian and Voigt models in varying ranges of the PDF,

the Voigt model was shown to be more appropriate even

in the low-r region. The results presented herein demonstrate

the importance of applying adequate peak profiles during

PXRD and PDF modelling for obtaining accurate structural

parameters.

7. Experimental procedures

TS data of a Ni powder (Pierce Inorganics, ICSD #52231,

space group Fm3m) packed in a glass capillary with an inner

diameter of 0.3 mm were collected at 300 K on the OHGI

detector (Kato et al., 2019; Kato & Shigeta, 2020) at the

RIKEN Materials Science beamline BL44B2 (Kato et al.,

2010; Kato & Tanaka, 2016) at the SPring-8 synchrotron

radiation facility. The incident X-ray energy was

25.301 (1) keV [� = 0.49003 (1) Å] as calibrated through Le

Bail refinement (Le Bail, 2005) of LaB6 (NIST SRM660b,

Black et al., 2011) data. The data were collected in the angular

range from 3� to 155� 2� corresponding to a Qmax of �25 Å�1.

The angular resolution was 0.005�. Data were also collected

from an empty glass capillary under equal conditions. The

PDFgetX3 algorithm (Juhás et al., 2013) was used to transform

the TS pattern from which the background was removed by

subtracting the data from the empty glass capillary. The reci-

procal-space range was 1.0 to 24.0 Å�1 and the ad hoc

correction parameter rpoly [see Juhás et al. (2013) for the

definition] set to 1.05. The PDF was computed in a range from

0.0 to 500.0 Å with a step size of 0.01 Å.

Refinement of both angular and direct-space data was

carried out using the TOPAS-Academic v6 software (Coelho

et al., 2011; Coelho, 2018). For the angular space Rietveld

refinement, the range was set to 8–123� 2�. The incident beam

was assumed completely polarized in the horizontal plane. The

background was fitted using a ninth-degree Chebyshev poly-

nomial. Diffraction peak profiles were fitted using Voigt

functions with angular dependencies corresponding to

constant and linearly broadened peaks in reciprocal space.

(See the supporting information for the custom-made TOPAS

v6 macro used for implementation.) The number of peak

profile parameters was minimized by iteratively inspecting the

agreement factors and correlation matrix. The two peak

profile parameters ��G and ��L were found to yield an adequate

description. The remaining parameters of the Rietveld model

included a scale factor, lattice parameter, ADP and a sin �-

dependent line shift parameter. The Rietveld model was

refined using 10 000 iterations. After each convergent itera-

tion, a random value between �25% and 25% of the

converged value from the previous iteration was added to the

ADP. The updated value was used as a starting point

for the next iteration. The same was applied to the peak

profile parameters with a random value between �50% and

50% of their converged values. The converged iteration with

the lowest agreement factor Rwp was selected as the final

model.

The direct-space PDF model refinements were carried out

in the range of 1.0–250.0 Å. A convolution with a sinc function

was included to account for the Fourier ripples produced by

the experimental limits of qmin and qmax (Chung & Thorpe,

1997). The refined parameters included a scale factor, lattice

parameter, ADP and a 1=r-dependent correlated motion

parameter �1. Both 1=r- and 1=r2-dependent parameters (�1

and �2, respectively) were tested but the former was found

most adequate. Two different models with different damping

and broadening parameters were applied: a Gaussian model

and a Voigt model. The Gaussian model included the

conventional parameters Qdamp and Qbroad as defined in the

PDFgui software (Farrow et al., 2007). The Voigt model

included the corresponding broadening parameters to linear

Gaussian and Lorentzian broadening (i.e. ��G and ��L), which

were implemented by the custom-made TOPAS macro shown

in the supporting information. A constant weighting scheme

was applied to each model, which were refined with 1000

iterations. After each convergent iteration, random values

between �25% and 25% of the converged values from the

previous iteration were added to the ADP, Qdamp, Qbroad,

��G and ��L parameters. The updated values were used as a

starting point for the next iteration. The converged iteration

with the lowest agreement factor Rwp was selected as the final

model.

PDF model refinements were also carried out in varying

ranges using the two models described above. The start point

of all ranges was set to 1.0 Å while the end point was

varied from 10.0 to 270.0 Å in steps of 10.0 Å. A constant

weighting scheme was employed but the weights of the last 5%

of points in all ranges were set to zero to circumvent the

problem related to convolutions in TOPAS (see the

supporting information). Each range was refined with 1000

iterations. After each convergent iteration, a random value

between �25% and 25% of the converged value from the

previous iteration was added to the ADP. The updated value

was used as a starting point for the next iteration. The

converged iteration with the best agreement factor was

selected as the final model.
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APPENDIX A
Derivation of the effects on the PDF from broadened
diffraction peaks

This derivation follows the same approach used by Thorpe et

al. (2002), where the derivation for a Gaussian broadening is

given. Here the derivation for Gaussian, Lorentzian and a

combination of both will be presented.

The PDF GðrÞ is usually defined from the scattering struc-

ture function SðqÞ through a sine transform as

G rð Þ ¼
1

2�

Z1
0

q SðqÞ � 1½ � sin qr dq;

or with integration limits taken as qmin and qmax. Here

q½SðqÞ � 1� is assumed to be zero in the intervals ½0; qmin½ and

�qmax;1�, such that the integral from 0 to1 is identical to the

region between qmin and qmax.

We wish to change this sine transform into a Fourier

transform to make the derivation more straightforward. As

the physically meaningful part of q½SðqÞ � 1� is only defined

for positive q, the function can be extended to negative valued

to be odd. This means that
R1
�1

q½SðqÞ � 1� sin qr dq =

2
R1

0 q½SðqÞ � 1� sin qr dq and
R1
�1

q½SðqÞ � 1� cos qr dq ¼ 0.

Using the Euler formula, GðrÞ can be written as the Fourier

transform

G rð Þ ¼



2�

Z1
�1

q S0ðqÞ � 1
� �

expð�iqrÞ dq

with 
 ¼ i=2. In the remainder of the derivation, all integrals

will have implicit limits of �1,1.

Starting with an unbroadened scattering intensity S0ðqÞ and

its corresponding PDF, G0ðrÞ, related through

G0 rð Þ ¼



2�

Z
q S0 qð Þ � 1
� �

expð�iqrÞ dq

q S0 qð Þ � 1
� �

¼
1




Z
G0ðrÞ expðiqrÞ dr;

we seek to understand the effect on the PDF by a broadening

of the scattering intensity:

S1 qð Þ ¼
R

S0 q0ð ÞC1ðq; q0Þ dq0

where C1ðq; q0Þ is the reciprocal-space broadening function,

assumed to be normalized with respect to q0. In cases where

C1ðq; q0Þ only depends on q and q0 as ðq� q0Þ, the integral will

be a convolution, but this is not otherwise the case. The

corresponding PDF is

G1 rð Þ ¼



2�

Z
q S1 qð Þ � 1
� �

expð�iqrÞ dq

¼



2�

Z Z
q

q0
q0 S0ðq

0
Þ � 1

� �
C1ðq; q0Þ expð�iqrÞ dq dq0

¼
1

2�

Z Z Z
q

q0
G0ðr

0ÞC1ðq; q0Þ

� expðiq0r0Þ expð�iqrÞ dq dq0 dr0

¼
R

G0ðr
0Þ�1ðr; r0Þ dr0

where

�1ðr; r0Þ ¼
1

2�

Z Z
q

q0
C1ðq; q0Þ expðiq0r0Þ expð�iqrÞ dq dq0:

That is, when the scattering is broadened by C1ðq; q0Þ, the PDF

will be modified by �1ðr; r0Þ.

A1. Gaussian broadening

Let

C1ðq; q0Þ ¼
q0

q

1

2��2
q

� �1=2
exp
�ðq� q0Þ

2

2�2
q

� 	
;

which is a Gaussian with width �q modified with a factor of

q0=q. This factor is approximately unity as long as the peak is

significantly narrower than its distance to the origin. The

factor is introduced to cancel the q0=q in the integral to obtain

�1ðr; r0Þ:

�1ðr; r0Þ ¼
1

2�

Z Z
1

2��2
q

� �1=2

� exp
�ðq� q0Þ

2

2�2
q

� 	
expðiq0r0Þ expð�iqrÞ dq dq0

¼
1

2�

Z
exp
�r0 2�2

q

2


 �
exp½iqðr0 � rÞ� dq:

Let the broadening �q be given by �2
q ¼ K2

G þ �
2
Gq2, where KG

and �Gq correspond to a constant and linear Gaussian

broadening, respectively. [When broadening two Gaussians

with widths �1 and �2, the result is a Gaussian with a width of

� ¼ ð�2
1 þ �

2
2Þ

1=2.] This leads to

�1ðr; r0Þ ¼
1

2��2
Gr0 2

� �1=2
exp
�r0 2K2

G

2


 �
exp
�ðr� r0Þ

2

2�2
Gr0 2

� 	
:

In the approximation of isotropic and uncorrelated thermal

motion of atoms, the PDF for the unbroadened scattering is

given by a summation over Gaussian peaks of the type:

G0ðrÞ ¼
X

n

An

1

2��2
0;n

� �1=2
exp
�ðr� rnÞ

2

2�2
0;n

� 	
:

Here, rn is the position of peak n (given by the interatomic

distances), An is their amplitude (related to the number and

type of atoms) and �0;n is their widths (related to the vibration

of atoms). The result of the broadening is then:

G1 rð Þ ¼
R

G0ðr
0Þ�1ðr; r0Þ dr0
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¼
X

n

An

1

2��0;n�G

Z
exp
�ðr0 � rnÞ

2

2�2
0;n

� 	
1

r0

� exp
�r0

02K2
G

2


 �
exp
�ðr� r0Þ

2

2�2
Gr0 2

� 	
dr0:

Each integrant only has nonzero values for r0 close to rn. Using

this approximation leads to

G1 rð Þ ¼
X

n

An exp
�r2

nK2
G

2


 �
1

2�ð�2
0;n þ �

2
Gr2

nÞ
� �1=2

� exp
�ðr� rnÞ

2

2ð�2
0;n þ �

2
Gr2

nÞ

" #
:

This means that each peak is damped by exp½ð�r2
nK2

GÞ=2� and

broadened by a Gaussian from �0;n to ð�2
0;n þ �

2
Gr2

nÞ
1=2.

This is also true for a general peak P0ðr� r0Þ centred at r0,

which, under the assumption of the peak being locally peaked

and narrow compared with its distance to the origin, will be

transformed to

G1ðrÞ ¼ exp
�r2

0K2
G

2


 �
1

2��2
Gr2

0

� �1=2

Z
P0ðr

0 � r0Þ

� exp
�ðr� r0Þ

2

2�2
Gr2

0

� 	
dr0;

which is a broadening of the peak P0 with a Gaussian of width

�Gr0 and damping by a Gaussian envelope function

exp½ð�r2
0K2

GÞ=2�.

A2. Lorentzian broadening

Let

C1ðq; q0Þ ¼
q0

q

1

�

�q

ðq� q0Þ2 þ �2
q

;

which is a Lorentzian with half width �q modified, once again,

with a factor of q0=q (negligible for a narrow peak with suffi-

cient distance to the origin). This gives

�1ðr; r0Þ ¼
1

2�

Z Z
1

�

�q

ðq� q0Þ
2
þ �2

q

expðiq0r0Þ expð�iqrÞ dq dq0

¼
1

2�

Z
exp½iqðr0 � rÞ� expð��qjr

0jÞ dq:

Let the broadening �q be given by �q ¼ KL þ �Lq, where KL

and �Lq correspond to constant and linear Lorentzian

broadening contributions, respectively. (When broadening two

Lorentzians with widths �1 and �2, the result is a Lorentzian

with a width of � ¼ �1 þ �2.) This leads to

�1ðr; r0Þ ¼
1

�
expð�KLjr

0
jÞ

�Lr0

ðr0 � rÞ
2
þ �2

Lr0 2
:

This will affect a general peak P0ðr� r0Þ centred at r0 (again,

under the assumption of the peak being locally peaked and

narrow compared with its distance to the origin) as

G1 rð Þ ¼
1

�
expð�KLr0Þ

Z
P0ðr

0 � r0Þ
�Lr0

ðr0 � rÞ
2
þ �2

Lr2
0

dr0:

This is a broadening with a Lorentzian with a half width of �Lr0

and a damping by an exponentially decaying function

expð�KLr0Þ.

A3. Combining several broadenings

Applying a second broadening to the already broadened

scattering data S1

S2ðqÞ ¼
R

S1ðq
0ÞC2ðq; q0Þ dq0

¼
R R

S0ðq
00ÞC1ðq

0; q00ÞC2ðq; q0Þ dq0 dq00

¼
R

S0ðq
00ÞCtotalðq; q00Þ dq00

where

Ctotalðq; q00Þ ¼
R

C1ðq
0; q00ÞC2ðq; q0Þ dq0:

That is, it is equivalent to broadening S0 with a total broad-

ening, Ctotal, obtained by broadening C1 with C2.

This will result in a further broadening of the already

broadened PDF:

G2 rð Þ ¼
R

G1ðr
0Þ�2ðr; r0Þ dr0

¼
R R

G0ðr
00Þ�1ðr

0; r00Þ�2ðr; r0Þ dr0 dr00

where

�2ðr; r0Þ ¼
1

2�

Z Z
q

q0
C2ðq; q0Þ expðiq0r0Þ expð�iqrÞ dq dq0:

Similarly, this can also be written as

G2 rð Þ ¼
R

G0ðr
00Þ�totalðr; r00Þ dr00

with

�totalðr; r00Þ ¼
R
�1ðr

0; r00Þ�2ðr; r0Þ dr0:

equivalent to broadening the initial PDF, G0, with the total

broadening obtained by broadening �1 with �2.

In the case where C1 and C2 are the Gaussian and

Lorentzian functions used above, Ctotal will be a Voigt function

with a Gaussian width of �q ¼ ðK
2
G þ �

2
Gq2Þ

1=2 and Lorentzian

half width of �q ¼ KL þ �Lq.

A peak in the PDF centred at r0 will then be broadened by a

Voigt function with Gaussian width �r ¼ �Gr0 and Lorentzian

half width �r ¼ �Lr0 and damped by expð�KLjr0jÞ

exp½ð�r2
0K2

GÞ=2�.
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