MS31 Unconventional interactions or symmetries for optimized and new properties, including chirality

MS31-05
Simulation of lattice defects in quinacridone

M.U. Schmidt ${ }^{1}$, B. Scherer ${ }^{1}$, D. Brey ${ }^{1}$
${ }^{1}$ Goethe Universität - Frankfurt (Germany)

Abstract

Various lattice defects in the alpha-l-phase of quinacridone (C2OH12N2O2) were simulated using lattice-energy minimisations. alpha-l-Quinacridone forms a chain structure in $P-1, Z=1$. The molecules are connected by hydrogen bonds along [010], by pi-stacking along [100] and by weak van der Waals interactions along [001]. alpha-I-Quinacridone is inherently nanocrystalline. Lattice defects were calculated in correspondingly large supercells with up to 4464 atoms, using a previously evaluated force-field. Vacancies, vacancy aggregates and interstitial molecules are energetically very unfavourable. A misorientation of a single molecule (flip around [010] by 180°) causes an energy increase of $243.7 \mathrm{~kJ} / \mathrm{mol}$. Various edge defects and screw defects were investigated. A screw defect along [010] leads to $\mathrm{E}=+76.1 \mathrm{~kJ} / \mathrm{mol}$, all other defects cause even greater energy increases. In contrast, the rotation of an entire chain around [010] by 180° leads to a very small energy increase only ($\mathrm{E}=1.57 \mathrm{~kJ} / \mathrm{mol}$), and the real crystals probably contain a high number of such defects. Various planar defects were calculated, including different stacking disorders, anti-phase domains and commensurately modulated structures with two different types of layers having different lateral periodicities. Stackings faults along [001] with herringbone packing instead of parallel packing are energetically quite favourable; the same is true for antiphase domains in the [001] direction. As an example for a bulk defect we calculated antiphase domains, in which blocks of $4 * 4$ chains are rotated by 180° around [010], which increases the energy only very slightly. Twinning by mirroring at the (001) plane is energetically favourable, and was observed in an HRTEM image. A rotation of chains, layers or block around [010] by 180° causes only a very slight modification of the molecular packing, which was not observable in the HRTEM. These investigations of lattice defects in alpha-l-quinacridone provide an insight to lattice defects, their energies and local structures in other similar organic chain structures, too.

References
D. Brey, B. Scherer, M.U. Schmidt, submitted.

