MS02 Infection and Disease/hot structures

MS02-2-1 HLA-B*57-restricted immune response to HIV TW10 epitope drives for selection of specific TCR gene usages regardless of the viral load #MS02-2-1

D. Chatzileontiadou ¹, C.A. Lobos ¹, H. Robson ², C.A. Almeida ³, C. Szeto ¹, L.J. D'Orsogna ³, S. Gras ¹ ¹La Trobe University - Bundoora, VIC (Australia), ²Monash University - Clayton, VIC (Australia), ³University of Western Australia - Perth, WA (Australia)

Abstract

HIV infects and depletes CD4⁺ T cells leading to severe immunosuppression. Currently almost 38 million people live with HIV worldwide¹. Rare individuals, termed HIV controllers, can control viral load and remain healthy while infected. Despite Human Leukocyte Antigen (HLA) gene diversity in the population, almost 50% of HIV controllers express the HLA-B57 molecule which presents, among others, the Gag derived epitope, TW10². Given the strong T-cell responses to this epitope and its presentation in early infection, TW10, could therefore shape the long-term control of HIV^{3,4}. However, the mechanisms contributing to HIV control related to this epitope remain unclear. Here, we study the CD8⁺ T cell responses to the TW10 epitope presented in HLA-B*57:01⁺ HIV⁺ individuals. We determine the $\alpha\beta$ T cell receptor (TCR) repertoire in both HIV controller and non-controller individuals revealing similarities and the existence of a public TCR and public clonotypes in both groups. We further determine the polyfunctionality of selected T cell clones from each group that reveal strong CD8⁺ T cell responses, shaped by the specific TCR repertoire biases regardless of the viral load. Furthermore, affinity measurements of selected TCRs and the first crystal structure of HLA-B*57:01-TW10 in complex with a CD8⁺ TCR reveal the basis of the TW10 TCR repertoire biases and their impact on antigen recognition. The link between HIV viral load and T cell function driven by immunodominant epitopes may further our understanding of immunologic control of HIV.

References

¹Global HIV & AIDS statistics — 2021 fact sheet

² Migueles SA, Sabbaghian MS, Shupert WL, Bettinotti MP, Marincola FM, Martino L, et al. HLA B*5701 is highly associated with restriction of virus replication in a subgroup of HIV-infected long term nonprogressors. Proc Natl Acad Sci U S A. 2000;97(6):2709-14.

³ Brumme ZL, Brumme CJ, Carlson J, Streeck H, John M, Eichbaum Q, et al. Marked epitope- and allele-specific differences in rates of mutation in human immunodeficiency type 1 (HIV-1) Gag, Pol, and Nef cytotoxic T-lymphocyte epitopes in acute/early HIV-1 infection. J Virol. 2008;82(18):9216-27.

⁴ Brennan CA, Ibarrondo FJ, Sugar CA, Hausner MA, Shih R, Ng HL, et al. Early HLA-B*57-restricted CD8+ T lymphocyte responses predict HIV-1 disease progression. J Virol. 2012;86(19):10505-16.