MS13 Structural Characterization of Functional Materials

MS13-1-14 Synthesis of α -MoO₃ nanofibres for enhanced field-emission properties #MS13-1-14

S.K.S. Patel¹

¹Department of Chemistry, MMV, Banaras Hindu University - Varanasi-221005 (India)

Abstract

One-dimensional α -MoO₃ nanofibres of 280–320 nm diameters were synthesized by a hydrothermal method. The morphologies and compositions of as-synthesized α -MoO₃ nanofibres have been characterized by X-ray powder diffraction, Raman spectroscopy, and field-emission scanning electron microscopy. X-ray photoelectron spectroscopy showed the predominantly 6+ oxidation state with a small percentage of reduced δ + (5 < δ < 6) oxidation state. The field-emission properties of α -MoO₃ nanofibres show a lower turn-on electric field of 2.48 V μ m⁻¹ and threshold electric field of 3.10 V μ m⁻¹. The results suggest that the α -MoO₃ nanofibres are promising candidate for efficient and high performance field-emission devices.

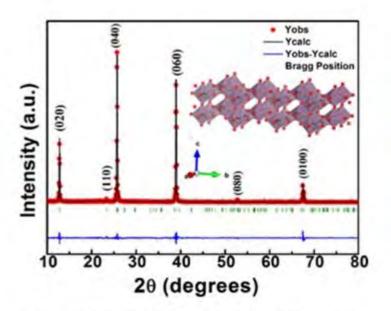


Fig. 1. Rietveld analysis of XRD data using orthorhombic structure with space group Pbnm of α -MoO₃ nanofibers and the insert shows the unit cell crystal structure.