MS13-1-24 Synthesis and structural analysis of new materials ferroelectric Ba(2-x)SrxGdFeNb4O15 solid solution with

(0 ≤ x ≤ 2) #MS13-1-24

J. Farhan ¹, A. Laaraj ¹, H. Majdoubi ², B. Ifegous ¹, T. Lachhab ¹, R. Adhiri ¹ ¹LIMAT FSBM - Casablanca (Morocco), ²MSN UM6P - Ben Guerir (Morocco)

Abstract

The structural study of $Ba_{(2-x)}Sr_xGdFeNb_4O_{15}$ powders with ($0 \le x \le 2$) has been reported. All samples were prepared using the conventional solid-state reaction. XRD results confirmed that all compounds have a tetragonal tungsten bronze (TTB) structure with space group P4/mbm, where A 1 sites are exclusively occupied by Gd^{3^+} . Ba^{2^+} and Sr^{2^+} ions are located in the A2 sites while the Fe^{3^+} and Nb^{5^+} ions are randomly distributed between the B1 and B2 sites. The Raman spectra of the powders showed mainly multi-component and broad bands related to the internal vibrations of the octahedral MO6. The size of the A-site ions decreases when the Nb/Fe-O stretching changed. The evolution of the O– Nb/Fe–O bending vibrations as a function of the substitution rate x, seems to be a signature of the phase modifications. Infrared spectroscopy (IR) indicated the presence of stretching vibration bands as Nb/Fe-O, but also some strain vibration bands as H-O-H and O-H. Finally, Scattering Electron Microscopy (SEM) analyses show clearly the formation of TTB structure with uniform and dense grains with some phase of GdNbO4.