MS15-1-4 SmBi_2O_4CI: the first single-crystal study in the systems $LnBi_2O_4X$ #MS15-1-4

M.V. Kurz¹, R.J.C. Locke¹, A. Erden¹, T. Schleid¹ ¹University of Stuttgart - Stuttgart (Germany)

Abstract

A mixture of Bi_2O_3 , Sm_2O_3 and $SmCl_3$ reacted at 800 °C in an eutectic mixture of NaCl and CsCl as flux in a fused silica ampoule and resulted in yellow plates of the title compound. $SmBi_2O_4Cl$ crystallizes in the tetragonal space group *P4/mmm* with the lattice parameters *a* = 388.91(3) pm and *c* = 895.16(7) pm with *Z* = 4 and hitherto its structure was only known from X-ray powder diffraction data [1]. The corresponding antimonate(III) $SmSb_2O_4Cl$ with the real composition $Sm_{1.3}Sb_{1.7}O_4Cl$ offers a mixed occupation of the antimony position with samarium [2,3] for the same crystal structure. In contrast to this, $SmBi_2O_4Cl$ shows no mixed occupation, but one samarium and one bismuth position with regular occupation.

The structure features one crystallographic samarium (1*a*: 0, 0, 0), one bismuth (2*h*: 1/2, 1/2, 0.28294(9)), one oxygen (4*i*: 0, 1/2, 0.1582(9)) and one chlorine position (1*b*: 0, 0, 1/2) each. Sm³⁺ is coordinated by eight oxygen atoms (*d*(Sm–O) = 240.6(5) pm) forming a [SmO₈]¹³⁻ cube. Each cube is connected via edges with four other cubes, resulting in a layer $\frac{2}{\infty} \left\{ \left[\text{SmO}_{8/2}^{e} \right]^{5-} \right\}$

parallel to the (001) plane (Figures 1 and 2). Bismuth is coordinated as ψ^1 -square pyramid [BiO₄]⁵⁻ by

$${}^{2}_{\infty}\left\{\left[BiO_{4/4}^{V}\right]^{+}\right\}$$

four oxygen atoms (d(Bi-O) = 224.2(4) pm), which are connected via four vertices to infinite layers $\sum_{\infty}^{2} \left\{ \left[SmO_{8/2}^{e} \right]^{5-} \right\}$

sandwiching the $a^{0.23}$ layers from both sides. The Cl⁻ anions are not efficiently connected to the Bi³⁺ cations (d(Cl···Bi) = 336.7(1) pm), but located in the gaps between the lone pairs at the Bi³⁺ centres.

References

[1] M. Schmidt, H. Oppermann, C. Henning, R. W. Henn, E. Gmelin, N. Söger, Z. Anorg. Allg. Chem. 2000, 626, 125–135.
[2] F. C. Goerigk, Th. Schleid, Z. Anorg. Allg. Chem. 2019, 645, 1079–1084.
[3] F. C. Goerigk. Doctoral Dissertation. Univ. Stuttgart 2021.

Extended unit cell of SmBi2O4CI.

[SmO8]13- cube (left) and Bi-O layer (right).

