MS15-1-8 Gd₃PS₃ and Gd₃PSe₃: two gadolinium phosphide chalcogenides with Th_3P_4 -type crystal structure #MS15-1-8

P. Djendjur ¹, N. Atmaca ¹, T. Schleid ¹ ¹University of Stuttgart / Institute for Inorganic Chemistry - Stuttgart (Germany)

Abstract

Chalcogenides of the rare-earth elements with the Th₃P₄-type structure are well-known throughout the chemical and crystallographic community. Several representatives of the binary sesquisulfides, -selenides and -tellurides RE_2Ch_3 (RE = La - Nd, Sm, Gd – Tb; Ch = S - Te) crystallize with this structure motif ^[1–2] and represent a cation-deficient variant of the Th₃P₄ prototype, occupying only 10.667 of the 12 possible cationic positions in the cubic unit cell to satisfy charge-neutrality according to $(RE^{3+})_{2.667} \square_{0.333}(Ch^{2-})_4$ for Z = 4. On the other hand, this allows for insertions of further metal cations like Na⁺ to yield NaRE₈Ch₁₂ (metallic according to $(Na^+)(RE^{3+})_8(Ch^{2-})_{12}(e^-))^{[3]}$ or even additional RE^{3+} cations leading to the composition RE_3Ch_4 (also metallic according to $(RE^{3+})_3(Ch^{2-})_4(e^-))^{[4]}$. Another example for the versatility of this structure is shown by the series of europium pnictogenide chalcogenides Eu₄ Pn_2Ch (Pn = P - Bi, Ch = S - Te) ^[5], which crystallize in the *anti*-type arrangement of the Th₃P₄ structure. Here, divalent Eu²⁺ cations occupy the former sixfold surrounded anion site and the former cation site is hosting a 2:1 mixture of pnictogenide and chalcogenide anions according to $(Eu^{2^+})_4[(Pn^{3^-})_2(Ch^{2^-})_1]$. The two new gadolinium phosphide chalcogenides Gd_3PS_3 (CSD-2169111) and Gd_3PSe_3 (CSD-2169112) could be obtained by replacing part of the Ch^{2^-} anions in gadolinium sulfide and -selenide Gd_3Ch_4 with P³⁻, resulting in formally ionic compounds with a statistically occupied mixed-anion site and a fully occupied $I\overline{43}d$

cation site according to $(Gd^{3^+})_3[(P^{3^-})_1(Ch^{2^-})_3]$. So both compounds crystallize in the cubic space group (no. 220) with *Z* = 4. They exhibit the lattice parameters $a(Gd_3PS_3) = 841.45(6)$ pm and $a(Gd_3PSe_3) = 868.79(6)$ pm, respectively, which are slightly larger for the sulfide, but somewhat smaller for the selenide than those of the corresponding C-type gadolinium sesquichalcogenides ($a(C-Gd_2S_3) = 838.47(9)$ pm ^[6] and $a(C-Gd_2Se_3) = 872.56(5)$ pm ^[7] for *Z* = 5.333). Gd³⁺ is surrounded by eight anions (P³⁻ and Ch^{2-} in a statistic fashion with a molar ratio of 1:3) forming a trigonal dodecahedron (d(Gd-P/S = 282 - 301 pm, d(Gd-P/Se = 290 - 312 pm), whereas the anionic site exhibits a trigonal hemiprismatic coordination sphere with six Gd³⁺ cations in its vicinity (Figure 1, see Table 1 for the atomic coordinates). Energy dispersive X-ray spectroscopy (EDXS) measurements were conducted to verify the composition of Gd₃PS₃ and Gd₃PSe₃ successfully.

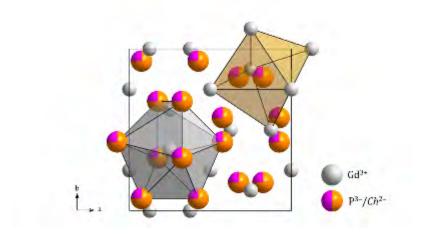

Atoms		xla	y/b	z/c	U _{eq} / pm²	C.N.
Gd ₃ PS ₃						
Gd	(12 <i>a</i>)	³ / ₈	0	¹ / ₄	132(2)	8
P/S	(16c)	0.07268(12)	x/a	x/a	96(5)	6
Gd ₃ PSe ₃						
Gd	(12 <i>a</i>)	³ / ₈	0	¹ / ₄	175(3)	8
P/Se	(16 <i>c</i>)	0.17803(8)	x/a	x/a	81(4)	6

Table 1. Atomic positions, equivalent isotropic displacement parameters and coordination numbers (C.N.) for Gd₃PS₃ and Gd₃PSe₃.

References

- [1] L. N. Eatough, A. W. Webb, H. T. Hall, Inorg. Chem. 1969, 8, 2069–2071.
- [2] Th. Schleid, Habilitationsschrift, University of Hannover, Hannover, Germany, 1993.
- [3] T. Heinze, W. Urland, Z. Anorg. Allg. Chem. 1994, 620, 1698–1701.
- [4] P. D. Dernier, E. Bucher, L. D. Longinotti, J. Solid State Chem. 1975, 15, 203–207.
- [5] F. Hulliger, *Mater. Res. Bull.* **1979**, *14*, 259–262.
- [6] Th. Schleid, F. A. Weber, Z. Anorg. Allg. Chem. 1998, 624, 557–558.
- [7] M. Folchnandt, Th. Schleid, Z. Anorg. Allg. Chem. 2001, 627, 1411–1413.

Cubic unit cell of Gd3PS3 and Gd3PSe3.

