MS15-1-9 Closing some gaps of knowledge: single crystals of Pr₂O[SiO₄] and Sm₂O[SiO₄] with the A-type structure #MS15-1-9

R.C. Locke¹, M.C. Schäfer¹, P. Djendjur¹, T. Schleid¹ ¹University of Stuttgart / Institute for Inorganic Chemistry - Stuttgart (Germany)

Abstract

Syntheses with lanthanoid metals in glassy silica ampoules often tend to yield oxosilicates as by-products. Thus, the two presented silicates Pr₂O[SiO₄] and Sm₂O[SiO₄] were also obtained from different reactions including the elemental lanthanoids, but with other target compounds. Both crystallize isostructurally to the $Ln_2O[SiO_4]$ series with Ln = La, Nd, Eu, Gd, Ho – Tm and Lu ^[1-6] in the monoclinic space group $P2_1/c$ with the lattice parameters a = 925.49(8) pm, b = 1000733.97(6) pm, c = 692.06(5) pm, $\beta = 108.382(3)^{\circ}$ for Pr₂O[SiO₄] (CSD-2127743) and a = 915.92(8) pm, b = 717.19(6) pm, c = 679.42(5) pm, $\beta = 107.825(3)^{\circ}$ for Sm₂O[SiO₄] (CSD-2127807) adapting the Gd₂O[SiO₄]- or A-type structure with Z = 4.

The Ln^{3+} cations occupy two crystallographically different positions (Figure 1). $(Ln1)^{3+}$ resides in a distorted capped square hemiprism with 8+1 oxygen atoms, while $(Ln2)^{3+}$ centres a capped trigonal prism with just seven of them. The lanthanoid-oxygen distances, namely d(Pr-O) = 234 - 269 pm and d(Sm-O) = 231 - 259 pm, fall into the usual range when compared with similar praseodymium and samarium oxosilicates such as apatite-type $Ln_{4.667}$ O[SiO₄]₃ (Ln = Pr and Sm)^[7], for example. Silicon is surrounded by a slightly distorted tetrahedron of four oxygen atoms as ortho-oxosilicate anion $[SiO_4]^4$ with silicon-oxygen distances ranging from 159 to 166 pm, which remains isolated. The fifth oxygen atom works as an O²⁻ anion, which is coordinated by four Ln^{3+} cations as $[OLn_4]^{10+}$ tetrahedron (d(O-Ln) = 230 - 243 pm). $\sum_{n=1}^{2} \left\{ \left[O(Ln1)_{1/1}(Ln2)_{3/3} \right]^{4+} \right\}$ layers spreading out parallel to

Their connectivity via edges and corners leads to corrugated the (100) plane (Figure 2).

References

[1] K. Fukuda, T. Iwata, E. Champion, Powd. Diffr. 2006, 21, 300–303.

[2] L. Leon-Reina, J. M. Porras-Vazquez, E. R. Losilla, L. Moreno-Real, M. A. G. Aranda, J. Solid State Chem. 2008, 181, 2501-2506.

[3] M. E. Bohem, Th. Schleid, Z. Anorg. Allg. Chem. 2016, 642, 1055–1055.

[4] Yu. I. Smolin, S. P. Tkachev, Kristallografiya 1969, 14, 22-25.

[5] I. Hartenbach, S. F. Meier, J. Wontcheau, Th. Schleid, Z. Anorg. Allg. Chem. 2002, 628, 2907–2913.

[6] H. Müller-Bunz, Th. Schleid, Z. Anorg. Allg. Chem. 1999, 625, 613-618.

[7] I. Hartenbach, Th. Schleid, Z. Kristallogr. 2005, 220, 206-210.

Coordination polyhedra of (Ln1)³⁺ and (Ln2)³⁺.

Unit cell of the A-type structure of $Ln_2O[SiO_4]$.

