MS23 Quasicrystals and complex intermetallic materials
MS23-2-3 $A_{49} G_{2} \mathrm{TI}_{108}(A=K, R b)$, examples of mixed trielides of the $\mathrm{K}_{49} \mathrm{Tl}_{108}$ structure type \#MS23-2-3

B.L. Lehmann ${ }^{1}$, C.R. Röhr ${ }^{1}$
${ }^{1}$ Albert-Ludwigs Universität - Freiburg (Germany)

Abstract

In the course of our studies on the structures of ternary trielides with mixed triel positions $(\mathrm{Ga} / \mathrm{In})[1]$ and $(\mathrm{Ga} / \mathrm{TI})[2]$, we succeeded to synthesize the new compounds $\mathrm{K}_{49} \mathrm{Ga}_{2} \mathrm{Tl}_{108}$ and $\mathrm{Rb}_{49} \mathrm{Ga}_{2} \mathrm{Tl}_{108}$. Beside $A_{8} \mathrm{GaTl}_{10}(A=\mathrm{K}, \mathrm{Rb}$, Cs) [2] with isolated clusters $\left[\mathrm{Ga} @ T I_{10}\right]^{8-}$, these compounds represent a further example of a structure containing Ga-centred polyhedra, which in this case however are not isolated but part of a three-dimensional network. For the synthesis of both compounds the elemental metals were used in a ratio of $\mathrm{K}_{47} \mathrm{Ga}_{5} \mathrm{Tl}_{105}$ and $\mathrm{Rb}_{49} \mathrm{Ga}_{10} \mathrm{Tl}_{100}$ respectively. $\mathrm{K}_{49} \mathrm{Ga}_{2} \mathrm{Tl}_{108}$ could be obtained in pure phase, whereas $\mathrm{Rb}_{49} \mathrm{Ga}_{2} \mathrm{Tl}_{108}$ was yielded as a byproduct beside the main phase $\mathrm{Rb}_{15} \mathrm{Tl}_{27}$ [3]. Both compounds are isotypic with the known thallides $\mathrm{K}_{49} \mathrm{Tl}_{108}$ [4] and $\mathrm{Rb}_{49} \mathrm{Tl}_{109.7}$ [5] and crystallize in the cubic space group Pm-3 $\left(\mathrm{K}_{49} \mathrm{Ga}_{2} \mathrm{Tl}_{108}, a=1722.8 \mathrm{pm}, R 1=0.045 ; \mathrm{Rb}_{49} \mathrm{Ga}_{2} \mathrm{Tl}_{108}, a=1752.7 \mathrm{pm}, R 1=0.055\right)$. The Ga atoms occupy the Wyckoff positions $1 a$ and $1 b$, which are empty in $\mathrm{K}_{49} \mathrm{Tl}_{108}$ and statistically occupied by Tl in $\mathrm{Rb}_{49} \mathrm{Tl}_{109.7}$. The trielide polyanion thus consits of Ga-centred icosahedra (Fig. 1. c.) which are all-exo bonded to monocapped Tl-centred hexagonal antiprisms of Tl (Fig. 1. b.). Each of those antiprisms is connected via exo-bonds to four icosahedra and nine neighbouring antiprisms, whereby the exo-bond between the capping atoms is connecting the antiprisms to dumbbells (Fig. 1. a.). The two cluster types are arranged in a hierarchic variant of the $\mathrm{Cr}_{3} \mathrm{Si}$-type with the icosahedra occupying the Si positions and the antiprisms taking the Cr positions. The latter are thus forming non-intersecting chains running parallel to the cell axes. The monocapping of the antiprisms causes a symmetry reduction from the space group Pm-3n to Pm-3, which is described by a Bärnighausen group-subgroup tree. The incorporation of Ga into the icosahedra leads to an increase of the volumes ofthese polyhedra from $71.1 \cdot 10^{6} \mathrm{pm}^{3}$ to $74.2 \mathrm{resp} .75 .4 \cdot 10^{6} \mathrm{pm}^{3}$. The Ga-TI distances amount to 309 pm and are thus enlarged with respect to the Ga-TI bond lenghts in $A_{8} \mathrm{GaTl}_{10}(290 \mathrm{pm})$. However, the distances nicely correspond to the value of 313 pm expected on the basis of the metallic radii of Ga and TI . This indicates considerable metallic bonding contributions. The bonding situation in both the binary and the ternary compounds was analyzed on the basis of band structure calculations.

References

[1] M. Falk, C. Röhr, Stacking polytypes of mixed alkali gallides/indides $A_{1-2}(\mathrm{Ga} / \mathrm{In})_{3}(A=K, R b, C s)$, synthesis, crystal chemistry and chemical bonding. Z. Kristallogr. 234, 623-646 (2019).
[2] B. Lehmann, C. Röhr, Endohedral ten-vertex clusters [Ga@TI10] ${ }^{8-}$ in the mixed trielides $A_{8} \mathrm{GaTl}_{10}(A=\mathrm{K}, \mathrm{Rb}, \mathrm{Cs})$. Z . Anorg. Allg. Chem. (submitted).
[3] Z. Dong, J. D. Corbett, $A_{15} \mathrm{Tl}_{27}$: A Structural Type Containing Both Isolated Clusters and Condensed Layers Based on the Tl_{11} Fragment, Syntheses, Structure, Properties and Band Structure, Inorg. Chem. 35(6), 1444-1450 (1996).
[4] V. Müller, G. Cordier, Darstellung und Kristallstruktur von $\mathrm{K}_{49} \mathrm{TI}_{108}$. Z. Naturforsch. 48b, 1035-1040 (1993).
[5] V. Schwinghammer, S. Gärtner, Effects upon Substitution in Alkali Metal Thallides: How far can X-Ray Structure Determination of Strongly Absorbing Compounds go? Acta Cryst. A76 Suppl. (2021).
a. Unit Cell b. Hexagonal Antiprism c. Icosahedron

c.

