MS23-2-3 A_{49} Ga₂TI₁₀₈ (A = K, Rb), examples of mixed trielides of the K₄₉TI₁₀₈ structure type #MS23-2-3

B.L. Lehmann ¹, C.R. Röhr ¹ ¹Albert-Ludwigs Universität - Freiburg (Germany)

Abstract

In the course of our studies on the structures of ternary trielides with mixed triel positions (Ga/In) [1] and (Ga/TI) [2], we succeeded to synthesize the new compounds K₄₉Ga₂TI₁₀₈ and Rb₄₉Ga₂TI₁₀₈. Beside A₈GaTI₁₀ (A = K, Rb, Cs) [2] with isolated clusters [Ga@TI10]8, these compounds represent a further example of a structure containing Ga-centred polyhedra, which in this case however are not isolated but part of a three-dimensional network. For the synthesis of both compounds the elemental metals were used in a ratio of K47Ga5TI105 and Rb49Ga10TI100 respectively. K49Ga2TI108 could be obtained in pure phase, whereas Rb₄₉Ga₂Tl₁₀₈ was yielded as a byproduct beside the main phase Rb₁₅Tl₂₇ [3]. Both compounds are isotypic with the known thallides K₄₉TI₁₀₈ [4] and Rb₄₉TI_{109.7} [5] and crystallize in the cubic space group *Pm*-3 (K₄₉Ga₂Tl₁₀₈, a = 1722.8 pm, R1 = 0.045; Rb₄₉Ga₂Tl₁₀₈, a = 1752.7 pm, R1 = 0.055). The Ga atoms occupy the Wyckoff positions 1a and 1b, which are empty in K₄₉TI₁₀₈ and statistically occupied by TI in Rb₄₉TI_{109.7}. The trielide polyanion thus consits of Ga-centred icosahedra (Fig. 1. c.) which are all-exo bonded to monocapped TI-centred hexagonal antiprisms of TI (Fig. 1. b.). Each of those antiprisms is connected via exo-bonds to four icosahedra and nine neighbouring antiprisms, whereby the exo-bond between the capping atoms is connecting the antiprisms to dumbbells (Fig. 1. a.). The two cluster types are arranged in a hierarchic variant of the Cr₃Si-type with the icosahedra occupying the Si positions and the antiprisms taking the Cr positions. The latter are thus forming non-intersecting chains running parallel to the cell axes. The monocapping of the antiprisms causes a symmetry reduction from the space group Pm-3n to Pm-3, which is described by a Bärnighausen group-subgroup tree. The incorporation of Ga into the icosahedra leads to an increase of the volumes of these polyhedra from 71.1.1.10⁶ pm³ to 74.2 resp. 75.4.10⁶ pm³. The Ga-TI distances amount to 309 pm and are thus enlarged with respect to the Ga-TI bond lengths in A_8 GaTI₁₀ (290 pm). However, the distances nicely correspond to the value of 313 pm expected on the basis of the metallic radii of Ga and TI. This indicates considerable metallic bonding contributions. The bonding situation in both the binary and the ternary compounds was analyzed on the basis of band structure calculations.

References

[1] M. Falk, C. Röhr, Stacking polytypes of mixed alkali gallides/indides A_{1-2} (Ga/In)₃ (A = K, Rb, Cs), synthesis, crystal chemistry and chemical bonding. *Z. Kristallogr.* 234, 623-646 (2019).

[2] B. Lehmann, C. Röhr, Endohedral ten-vertex clusters $[Ga@TI10]^{8-}$ in the mixed trielides A_8GaTI_{10} (A = K, Rb, Cs). Z. Anorg. Allg. Chem. (submitted).

[3] Z. Dong, J. D. Corbett, A₁₅Tl₂₇: A Structural Type Containing Both Isolated Clusters and Condensed Layers Based on the Tl₁₁ Fragment, Syntheses, Structure, Properties and Band Structure, *Inorg. Chem.* 35(6), 1444-1450 (1996).

[4] V. Müller, G. Cordier, Darstellung und Kristallstruktur von K₄₉TI₁₀₈. Z. Naturforsch. 48b, 1035-1040 (1993).

[5] V. Schwinghammer, S. Gärtner, Effects upon Substitution in Alkali Metal Thallides: How far can X-Ray Structure Determination of Strongly Absorbing Compounds go? *Acta Cryst.* A76 Suppl. (2021).

a. Unit Cell b. Hexagonal Antiprism c. Icosahedron

