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A novel automated high-throughput screening approach, ClusterFinder, is

reported for finding candidate structures for atomic pair distribution function

(PDF) structural refinements. Finding starting models for PDF refinements is

notoriously difficult when the PDF originates from nanoclusters or small

nanoparticles. The reported ClusterFinder algorithm can screen 104 to 105

candidate structures from structural databases such as the Inorganic Crystal

Structure Database (ICSD) in minutes, using the crystal structures as templates

in which it looks for atomic clusters that result in a PDF similar to the target

measured PDF. The algorithm returns a rank-ordered list of clusters for further

assessment by the user. The algorithm has performed well for simulated and

measured PDFs of metal–oxido clusters such as Keggin clusters. This is there-

fore a powerful approach to finding structural cluster candidates in a modelling

campaign for PDFs of nanoparticles and nanoclusters.

1. Introduction

Throughout the last century, crystallographic methods have

played a crucial role in advancing materials science, yet they

often struggle when examining nanomaterials with limited

long-range order (Billinge & Levin, 2007). Total scattering

with pair distribution function (PDF) analysis has shown

promise for characterizing such nanomaterials (Billinge &

Levin, 2007; Christiansen et al., 2020). The PDF, derived from

the Fourier transform of normalized and corrected X-ray,

neutron or electron scattering intensities, offers a real-space

representation of interatomic distances in the sample. As the

data used in the Fourier transform include both Bragg and

diffuse scattering, PDF analysis can be used to characterize the

structure of materials with or without long-range atomic order

(Egami & Billinge, 2012; Christiansen et al., 2020).

The challenge of ab initio structure solution from PDFs has

long been pursued (Juhás et al., 2006, 2008, 2010; Cliffe et al.,

2010; Cliffe & Goodwin, 2013; Anker et al., 2020; Kjær et al.,

2023; Kløve et al., 2023). However, success remains limited to

rather simple chemical systems like simple inorganic crystals,

the C60 buckyball and mono-metallic nanoparticles. In the

absence of broadly applicable ab initio structure solution

methods, suitable starting models are necessary to refine the

PDFs. For crystalline or nanocrystalline materials, such

starting models can, in many cases, easily be identified from

crystallographic databases. However, this task becomes

exceptionally difficult for small clusters and nanomaterials

with significant disorder. Recent methods such as Cluster-

Mining (Banerjee et al., 2020), StructureMining (Yang et al.,
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2020) and POMFinder (Anker et al., 2024) have taken the

approach of screening large numbers of structures that are

pulled from databases or algorithmically generated. None-

theless, they are all restrained to the presence of a suitable

database of structures or an algorithmic structure generator.

We recently presented a hybrid approach, ML-MotEx

(Anker et al., 2022), where the user initially selects candidate

crystal structures from a crystallographic database. Explain-

able machine learning is then used to find sub-clusters from

the candidate structure that are consistent with the data, which

can then be used for further structure refinement and analysis.

The approach works well but is slow, taking several minutes

for each starting structure. This limits its application to cases

where the candidate parent crystal structures are few and

obvious to the user. Here, we propose a novel algorithm,

ClusterFinder, that follows the same approach of sampling

sub-clusters from larger structural candidates, but it uses a

non-machine learning direct-scoring approach for identifying

high-performing sub-clusters. This speeds up the selection

procedure from minutes to seconds, allowing for an automated

search for sub-clusters over large numbers of candidate parent

structures that can be selected in an automated way from

structural databases.

2. Method

The basic strategy for finding clusters from crystalline frag-

ments was described by Anker et al. (2022). We summarize it

here. The starting point is an atomic PDF experiment of a

sample that contains small clusters, for example a soluble

reagent or nanoparticles suspended in a solvent. The atomic

arrangement in highly disordered materials can also some-

times be described using cluster structures (Du et al., 2012;

Castillo-Blas et al., 2020; Christiansen et al., 2020). The

resulting measured PDF has a small number of peaks confined

to the low-r region, indicating the presence of unknown

atomic clusters of small size (see Fig. 1).

In principle, the data can be fitted using the Debye scat-

tering equation in programs such as DISCUS (Proffen &

Neder, 1997, 1999) or DiffPy-CMI (Juhás et al., 2015) to

understand the structure of the clusters, but this process

requires a good initial candidate structure to be given. The

main challenge is to find a set of good starting models for the

fit. ClusterFinder addresses this need. It reuses the approach

taken by ML-MotEx (Anker et al., 2022) where a set of

chemically reasonable crystal structures is first identified.

From the crystal structures, which are represented using

crystallographic information files (CIFs), candidate templates

are then cut out. The candidate templates are represented in

xyz format (a list of atomic identities and their respective

Cartesian coordinates x, y and z). Assuming for now that the

cluster present in the experimental data, the target cluster, is

contained within the candidate template, the principal goal is

to find the subset of occupied atom sites within that template

that corresponds to the target cluster. A search over all

possible permutations of present versus absent atoms is

impossible because of the combinatorics, with 2N � 1 possi-

bilities for a template of N sites. ML-MotEx uses an explain-

able machine learning approach to optimize this problem by

learning the probabilities that each atom might be present in

the target cluster after iterating over a small subset of all the

possible permutations. This places the atom sites in a rank-

ordered list and makes it easy for the user to select a cut-off

for which sites are occupied to generate the target cluster

configuration. Of course, the target cluster may not be present

in the template and in general there is a further outer loop that

needs to be iterated over all possible candidate crystal struc-

tures and templates. The ML-MotEx algorithm is too slow to

do this over many template candidates and the success of the

approach relies on a strong chemical intuition suggesting a

small number of candidate structures.

At the heart of the algorithm is the calculation to generate

an ordered list of sites based on the probability that they are

present in the target cluster. The LIGA algorithm (Juhás et al.,

2006, 2008) also scores atoms in a cluster as part of its back-

tracking cluster reduction step, where poor performing clus-

ters are reduced in size by preferentially removing atoms that

are contributing more error to the agreement with the data.

The ranking was done using the commonly used PDF

weighted profile agreement factor,

Rwp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1½GobsðriÞ � Gcalcðri;PÞ�
2

Pn

i¼1 GobsðriÞ
2

s

� 100%; ð1Þ

where Gobs and Gcalc are the observed and calculated PDF

intensities, respectively, for the set P of model refinement

parameters. The sum is over the n points in the PDF.

Taking inspiration from the LIGA algorithm, we attempt an

approach of computing the contribution to the fitting error for

each atom site in the cluster. We call this the atom-removal

error, and denote it for the ith atom by �Ri
wp. It is computed

by evaluating Rwp for the full set of atoms, then recomputing

Rwp for the cluster with the ith atom removed and taking the

difference. This allows us to identify which atoms contribute

the most error to the fit, allowing us to target them for

removal. For each computation of Rwp, a scale factor and an

isotropic expansion/contraction factor are allowed to be
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Figure 1
A simulated PDF for a C60 buckyball from a single unit cell of a C60

crystal structure (Chen & Yamanaka, 2002). The simulation parameters
mimic typical PDF dataset values and can be seen in Section A in the
supporting information.
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refined to give the best agreement. Atomic displacement

parameters (ADPs) were fixed to 0.3 Å2 for the metallic atoms

and 0.4 Å2 for the oxygen atoms. This procedure is extremely

rapid and results in a list of atomic sites ranked by �Ri
wp.

The candidate structure must be large enough to encapsu-

late the target cluster, but the computational cost scales line-

arly with the number of atoms of the template structure and so

the cluster size chosen can thus be a compromise between time

and the cluster structures screened.

To visualize the results, we plot the templates with each

atom site colour coded based on its �Ri
wp. Atom sites with

negative (good) �Ri
wp are coloured yellow and those with

positive (bad) �Ri
wp are coloured blue. The colour coding is

further explained in Section B in the supporting information.

The approach is illustrated schematically for a trivial example

of a small cluster consisting of two atoms in Fig. 2. Note that

ClusterFinder only ranks the atoms in the template, and a

human input is still needed to determine which atoms to

remove in the subsequent task of finding the best cluster

candidates. In Fig. 2, it is trivial to remove atoms 3 and 4 from

the ClusterFinder output, but this task might not always be

trivial and may rely on the chemical intuition of the user.

However, it is still extremely valuable because, due to its

speed, it can be used to screen large numbers of structures to

find the best cluster candidates.

To test the ClusterFinder approach, we here use it on

simulated and experimental PDF data. ClusterFinder provides

comparable results to ML-MotEx in quality but orders of

magnitude more quickly. The acceleration is sufficient to allow

screening of large databases of starting models in minutes. To

demonstrate the power of this, we provide five examples

where we screen the Inorganic Crystal Structure Database

(ICSD, https://icsd.fiz-karlsruhe.de/index.xhtml; Zagorac et al.,

2019), containing 188 631 structure entries, for a suitable

starting model. This is done in a time frame ranging from 3 to

42 min. We expect this to make ClusterFinder highly valuable

since, if the target cluster exists anywhere in any known crystal

structure, it will automatically be found without any user input

at this stage.

3. Results and discussion

3.1. Applying ClusterFinder to extract cluster motifs from

simulated PDFs

We first demonstrate ClusterFinder’s ability to extract

cluster motifs from simulated PDFs. Fig. 3 shows three simu-

lated PDFs, each corresponding to a distinct structure: a

decatungstate polyoxometallate cluster from an Na5-

(H7W12O42)(H2O)20 crystal structure (Redrup & Weller,

2009), coloured in blue; a C60 buckyball from the C60 crystal

structure (Chen & Yamanaka, 2002), coloured in green; and a

paratungstate polyoxometallate cluster originated from

a (Ba(H2O)2{H[N(CH3)2]CO}3)2(W10O32){H[N(CH3)2]CO}2

crystalline model (Poimanova et al., 2015), coloured in red.

The values of the simulation parameters used are listed in

Section A in the supporting information. Figs. 3(b)–3(d) show

the structural templates used by ClusterFinder.

In these tests, the structural templates were constructed

using the crystal structures containing each of the cluster

structures, and including the minimum number of unit cells

needed to include the full cluster (Section C in the supporting

information). ClusterFinder outputs a list of atomic sites

ranked by the �Ri
wp value, and we visualize atom sites with

negative �Ri
wp as yellow and those with positive �Ri

wp as blue.

The ranking is here done on the metal atoms, while oxygen

atoms are removed if they are beyond a distance threshold of

2.6 Å from any other atom. The resulting visualizations are

shown in Figs. 3(b)–3(d), where the atoms with the lowest

�Ri
wp values have been coloured yellow, while the rest are

coloured blue. Section C in the supporting information shows

a similar representation but where the atom-removal values

are directly shown using a continuous colour bar. Oxygen

atoms are coloured red and polyhedra are coloured according

to their metal atom centre.

ClusterFinder correctly extracted all three cluster structures

from their starting model in under a minute using a standard

laptop (Intel Core i7-8665U CPU at 1.9/2.11 GHz), demon-

strating a significant speed advantage over the ML-MotEx

algorithm (Anker et al., 2022), which takes approximately an
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Figure 2
An illustration of the ClusterFinder process. A starting model is provided
as input and the Rwp value is calculated by structure refinement. Atoms
are iteratively removed from the starting model and the revised model is
fitted to the experimental PDF. The atom-removal error �Ri

wp is calcu-
lated by taking the difference between the Rwp values of the full starting
model and when the atoms are removed. Atoms are colour coded based
on the atom-removal error – yellow indicates a negative �Ri

wp value
(improved fit) while blue signifies a positive �Ri

wp value (worsened fit).
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hour on the same computer. Although ClusterFinder accu-

rately extracts the decatungstate polyoxometallate cluster

(blue) and the paratungstate polyoxometallate cluster (red), it

does not completely recover the C60 buckyball (green),

incorrectly labelling two atoms. The ML-MotEx algorithm

also exhibited similar limitations in extracting this structure.

Note that while ClusterFinder is faster than ML-MotEx, the

latter algorithm is more versatile and has, for example, also

been used to determine stacking fault size domain distribu-

tions from experimental powder diffraction and PDF data

from �-MnO2 nanoparticles (Magnard et al., 2022).

3.2. Applying ClusterFinder to extract cluster motifs from

experimental PDFs

While ClusterFinder’s potential to extract cluster motifs

from various crystalline supercell structures has been

demonstrated with simulated PDFs, it must also work on

experimental data. Here we benchmark the performance of

ClusterFinder against that of the previously published ML-

MotEx algorithm by comparing its performance on the same

set of experimental PDFs and clusters.

An experimental PDF was obtained from a solution of

0.05 M ammonium metatungstate hydrate, (NH4)6-

(H2W12O40)·H2O in water, which dissolves to form mono-

disperse �-Keggin clusters (Juelsholt et al., 2019).

Experimental details can be found in the ML-MotEx paper

(Anker et al., 2022). We employed four different crystal-

lographic models to extract templates for ClusterFinder/ML-

MotEx as listed in Table 1.

Again, only a scale factor and an isotropic expansion/

contraction factor were refined during the ClusterFinder

process. As seen in Fig. 4, both ClusterFinder and ML-MotEx

successfully extracted the �-Keggin clusters with few misla-

belled atoms for all four starting models. ClusterFinder has

slightly more mislabelled atoms than ML-MotEx, but it is

orders of magnitude faster, making it an ideal choice for

screening larger databases.
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Table 1
Four starting models containing the �-Keggin clusters used with
ClusterFinder to extract an �-Keggin cluster.

Starting
model Crystal composition Reference

1 [Hpy]4H2[H2W12O40] (py = pyridine) Niu et al. (2004)

2 [(CH3)4N]4SiW12O40 Joachim et al. (1981)
3 ([(CH3)2NH2]6{Cu[HCON(CH3)2]4}-

(GeW12O40)2)[HCON(CH3)2]2

Niu et al. (2003)

4 [(CH3)2NH2]3(PW12O40) Busbongthong & Ozeki
(2009)

Figure 4
Comparisons of the ML-MotEx and ClusterFinder analyses of an
experimental PDF obtained from Keggin clusters in solution. Results are
given from the ML-MotEx and ClusterFinder methods on a PDF obtained
from a solution of ammonium metatungstate hydrate using four different
starting models, (1) (Hpy)4H2(H2W12O40) (py = pyridine) (Niu et al.,
2004), (2) [(CH3)4N]4SiW12O40 (Joachim et al., 1981), (3) ([(CH3)2NH2]6

{Cu[HCON(CH3)2]4}(GeW12O40)2)[HCON(CH3)2]2 (Niu et al., 2003)
and (4) [(CH3)2NH2]3(PW12O40) (Busbongthong & Ozeki, 2009). The 24
[structures (1), (3) and (4)] and 12 [structure (2)] atoms with the lowest
atom-removal values have been coloured yellow, while the rest are
coloured blue. Oxygen atoms are coloured red.

Figure 3
Analysis of simulated PDFs of well known cluster structures. (a) Simu-
lated PDFs of a decatungstate polyoxometallate cluster from the
Na5(H7W12O42)(H2O)20 crystal structure (blue) (Redrup & Weller,
2009), a C60 buckyball from a single unit cell of a C60 crystal structure
(green) (Chen & Yamanaka, 2002) and a paratungstate polyoxometallate
cluster obtained from the (Ba(H2O)2{H[N(CH3)2]CO}3)2(W10O32)-
{H[N(CH3)2]CO}2 crystalline model (red) (Poimanova et al., 2015).
Simulation parameters were chosen to mimic typical measured PDF
datasets and are listed in Section A in the supporting information. (b)–(d)
Results of using ClusterFinder on the three simulated PDFs where the
atoms with the (b) 40, (c) 60 and (d) 12 atoms with the lowest �Ri

wp

values have been coloured yellow, while the rest are coloured blue.
Section C in the supporting information shows a similar representation
but where the atom-removal values are directly shown using a continuous
colour bar. Oxygen atoms are coloured red and polyhedra are coloured
according to their metal atom centre.
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3.3. Screening the ICSD for a suitable starting model with

ClusterFinder

We now use ClusterFinder to scan the whole ICSD for the

best-fitting structure models for the experimental PDF

obtained from �-Keggin clusters in solution. ClusterFinder

uses a single unit cell of each crystal structure (188 631

structures, although we removed unreadable CIFs making it

187 469 structures) in the ICSD as the starting template. To

accelerate the ClusterFinder process, only the scale factor was

refined, and structures without W, Fe or Mo atoms (158 399

structures), or starting templates with over 1000 atoms (zero

structures) were excluded. This left 29 070 candidate struc-

tures. For database screening, an isotropic contraction/

expansion factor was not refined. Afterwards, the template

structures from crystals in the ICSD were ranked according to

their average �Ri
wp value during the ClusterFinder process.

The complete computation took 17.5 min (1046 s) on an AMD

Ryzen Threadripper 3990X with 64 cores at 2.9/4.3 GHz, or

10 h (34 882 s) on a standard laptop (Intel Core i7-8665U CPU

at 1.9/2.11 GHz). Fig. 5 demonstrates that all of the top five

crystal structures (Table 2) contained the �-Keggin cluster.

This shows ClusterFinder’s ability to scan large structural

databases effectively, such as the ICSD, for appropriate cluster

structures.

ClusterFinder prioritizes starting templates exclusively

comprising the essential cluster structure, i.e. clusters in which

no atoms need removal and that thereby inherently match

their target cluster, over those that contain additional atoms.

Consequently, the starting template generation influences the

ranking of crystal structures in the ICSD. In instances where

exclusively essential clusters are present, the colour coding

still reflects the internal atomic ranking, even if all atoms are

good and none requires removal. Fig. 5 demonstrates this

phenomenon; for instance, starting template (IV) contains

only four essential �-Keggin clusters, with no atoms needing

removal. However, some atoms are coloured blue, as the

colour bar merely signifies the internal atomic ranking. In the

case of a starting template containing essential clusters with

additional atoms, as seen in Fig. 5, ClusterFinder indicates

which atoms require removal.

ClusterFinder can also extract a cluster structure from a

crystalline metal oxide structure. The "-Keggin cluster serves

as an excellent example of a cluster structure that can be

directly cut out from a spinel structure. A PDF of an Al12O40

"-Keggin cluster from the spinel MgAl2O4 crystal structure (Ji

et al., 2020) was simulated with parameters that mimic typical

PDF dataset values, as seen in Section A in the supporting

information. The PDF and structure are illustrated in Fig. 6.

Again, ClusterFinder was used to scan all structures in the

ICSD. This time, crystal structures without W, Fe, Mo or Al

atoms (143 956 structures) or starting templates with more

than 1000 atoms (704 structures) were excluded. After

evaluation, 42 809 structures were ranked based on their

average �Ri
wp value found during the ClusterFinder process.

The entire procedure takes 42 min (2495 s) on an AMD Ryzen
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Figure 5
An illustration of how ClusterFinder is used to screen the ICSD for the correct starting model for an experimental PDF obtained from �-Keggin clusters
in solution. For each structure in the ICSD, the ClusterFinder procedure is performed, and the atoms are colour coded based on their impact on fit quality
using a continuous colour bar. Afterwards, the ICSD structures are sorted according to their average �Ri

wp values. The five candidate ICSD structures
with the lowest average Rwp value are highlighted. The top five candidates are all starting templates exclusively comprising essential cluster structures –
clusters in which no atoms need removal and that thereby inherently match their target cluster. An example of an essential �-Keggin structure with
additional atoms (non-essential structure) is shown to exemplify that ClusterFinder provides meaningful atomic rankings of non-essential structures.
Oxygen atoms are coloured red. Atoms different from W, Fe, Mo or O are omitted for clarity.

Table 2
Crystal composition of the top five candidate crystal structures ranked by
ClusterFinder for the PDF obtained from �-Keggin clusters in solution.

Ranked
structure Crystal composition Reference

(I) [(CH3)4N]6[Cu0.5(H2)0.5O4W12O36](H2O)10 Lunk et al.

(1993)
(II) Cs5[Cr3O(OOCH)6(H2O)3](CoW12O40)(H2O)2 Uchida et al.

(2006)
(III) [(CH3)4N]6(H2W12O40)(H2O)9 Asami et al.

(1984)
(IV) [Al13O4(OH)24(H2O)12](H2W12O40)(OH)(H2O)23.12 Son et al.

(2003)
(V) K2(H2O)4Eu(H2O)7[Eu(H2O)3HAlW11O39](H2O)7 Niu et al.

(2013)

http://doi.org/10.1107/S2053273324001116
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Threadripper 3990X with 64 cores at 2.9/4.3 GHz or 23 h

(82 100 s) on a standard laptop (Intel Core i7-8665U CPU at

1.9/2.11 GHz). The top five structures, shown in Fig. 6, are all

spinel structures.

We now proceed to apply ClusterFinder to a simulated PDF

calculated from the "-Keggin cluster cut out from an "-Keggin

crystal structure {here [Al13O4(OH)24(H2O)12]2(V2W4O19)3-

(OH)2(H2O)27; Son & Kwon, 2004} instead of a cut out from

the spinel crystal structure. The "-Keggin obtained in this way

is more disordered than that cut out from the spinel crystal

structure. The disorder can be seen in both the structures and

their PDFs (Figs. 6 and 7), where the PDF simulated from the

spinel-derived "-Keggin (Fig. 6) exhibits sharper peaks than

the PDF simulated from the "-Keggin cluster cut out of the

[Al13O4(OH)24(H2O)12]2(V2W4O19)3(OH)2(H2O)27 crystal

structure (Son & Kwon, 2004) (Fig. 7). Again, we use

ClusterFinder on all ICSD structures containing W, Fe, Mo or

Al atoms one by one. Afterwards, it ranks the structures based

on their average �Ri
wp value obtained during the Cluster-

Finder process. Fig. 7 and Table 4 show that the top five

structures mainly contain "-Keggin clusters or are variants of

the spinel structure [structures (III) and (V)]. While �-Keggin

and "-Keggin clusters are very similar and only distinct in the

different rotational orientations of their four M3O13 units,

ClusterFinder is able to differentiate between them in starting

template structures (I) and (II) where the �-Keggin motif is

removed (blue) and the "-Keggin motifs are kept (yellow).

ClusterFinder can, moreover, discern between the more

ordered spinel-obtained motifs (Fig. 6 and Table 3) and the

more distorted Keggin crystal structure (Fig. 7 and Table 4),

which demonstrates that it is sensitive to minor changes in the

PDF. This highlights the level of detailed description attained

in this modelling approach.

In Sections F and G in the supporting information, we

present two similar examples in which we rank the ICSD

structures according to experimental datasets obtained from

ionic [Bi38O45] clusters and ceria (CeO2) nanoparticles. We

find that the highest ranked structures from the [Bi38O45]

cluster example are �-Bi2O3 crystal structures, as previously

observed by Weber et al. (2017). For the ceria nanoparticles,

the highest ranked structures correspond to bixbyite-type

structures, which are related to the fluorite-type structure that

CeO2 would be expected to take. This demonstrates that,

while ClusterFinder often provides results closely related to

the true chemical solution, validation and considerations of
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Figure 6
An illustration of how ClusterFinder is used to screen the ICSD for the correct starting model for a simulated PDF obtained from an "-Keggin cluster cut
out of a spinel crystal structure (coloured light blue in the left of the figure with Mg in the centre). For each structure in the ICSD, the ClusterFinder
procedure is performed and the atoms are colour coded based on their impact on the fit quality. Afterwards, the ICSD structures are sorted according to
their average �Ri

wp values during the ClusterFinder process. The five candidates with the lowest Rwp values are highlighted. More extensive views of the
PDF fits, including the calculated Rwp values, can be seen in Section D in the supporting information. Atoms different from W, Fe, Mo, Al or O have been
omitted for clarity.

Table 3
Crystal composition of the top five candidate crystal structures ranked by
ClusterFinder for the simulated PDF from the Al12O40 "-Keggin cluster
cut out from the spinel MgAl2O4 crystal structure.

Ranked
structure Crystal composition Reference

(I) NiAl2O4 Vegard & Borlaug (1943)

(II) MgAl2O4 Zorina & Kvitka (1968)
(III) ZnAl2O4 Holgersson (1927)
(IV) ZnAl2O4 Vegard & Borlaug (1943)
(V) ZnAl2O4 Saalfeld (1964)

Table 4
Crystal composition of the top five candidate crystal structures calculated
by ClusterFinder for the simulated PDF from the "-Keggin cluster cut out
of the Al12O40 [Al13O4(OH)24(H2O)12]2(V2W4O19)3(OH)2(H2O)27

crystal structure (Son & Kwon, 2004).

Ranked
structure Crystal composition Reference

(I) [Al13O4(OH)24(H2O)12](H2W12O40)(OH)(H2O)23.12 Son et al.

(2003)
(II) [Al13O4(OH)24(H2O)12](CoW12O40)(OH)(H2O)20 Son et al.

(2003)
(III) Ca2Mg2Fe2[Al14O31(OH)](Al2O)(Al)[Al(OH)] Rastsvetaeva

et al. (2010)
(IV) [(GeO4)Al12(OH)24(H2O)12](SeO4)4(H2O)14 Lee et al.

(2001)

(V) (Al2O3)13(SO3)6(H2O)79 Nordstrom
(1982)

http://doi.org/10.1107/S2053273324001116
http://doi.org/10.1107/S2053273324001116


structure relations are still required in the data analysis

process.

4. Conclusions

We have introduced a new automated structure selection

approach called ClusterFinder for identifying suitable starting

models for analysis and refinement of PDFs from nano-

clusters. The premise of ClusterFinder is that the structure of a

nanocluster can probably be described as a fragment of an

already published crystal structure, and it thus screens crystal

structures and identifies fragments for further analysis. The

structure found by ClusterFinder is not necessarily a unique

solution to the PDF, but ClusterFinder’s automated process

ensures a systematic and extensive screening of a range of

possible structures.

ClusterFinder is inspired by our previously developed

algorithms, LIGA and ML-MotEx, but is significantly faster,

facilitating screening of large databases for cluster identifica-

tion in minutes. Our study demonstrates ClusterFinder’s effi-

cacy as a robust tool for extracting appropriate starting models

from extensive structural databases like the ICSD. By applying

ClusterFinder to PDFs from various nanoclusters, such as

�-Keggin clusters, "-Keggin clusters, ionic [Bi38O45] clusters

and ceria nanoparticles, we have showcased its abilities in

effectively ranking and selecting the most relevant structure

models based on fit quality.

All the data supporting this study are available either within

the paper, as supporting information or on the associated

GitHub to the paper, https://github.com/AndySAnker/

ClusterFinder. The code supporting this study is also avail-

able on the same associated GitHub.

5. Related literature

For further literature related to the supporting information,

see Anker et al. (2021), Artini et al. (2014), Chakraborty et al.

(2006), Coduri et al. (2013), Estes et al. (2016), Juhás et al.

(2013), Labidi et al. (2008), Rademacher et al. (2001), Rado-

savljević-Evans et al. (2002), Sasaki et al. (2004) and Yang et al.

(2014).
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Figure 7
An illustration of how ClusterFinder is used to screen the ICSD for the correct starting model for a simulated PDF obtained from an "-Keggin cluster cut
out of an "-Keggin crystal structure (coloured light blue in the left of the figure). For each structure in the ICSD, the ClusterFinder procedure is
performed and the atoms are colour coded based on their impact on the fit quality. Afterwards, the ICSD structures are sorted according to their average
�Ri

wp values during the ClusterFinder process. The five candidates with the lowest Rwp value are highlighted. More extensive views of the PDF fits,
including the calculated Rwp values, can be seen in Section E in the supporting information. Oxygen atoms are coloured red. Other atoms than W, Fe, Mo,
Al or O have been omitted for clarity.

http://doi.org/10.1107/S2053273324001116
https://github.com/AndySAnker/ClusterFinder
https://github.com/AndySAnker/ClusterFinder
http://doi.org/10.1107/S2053273324001116
http://doi.org/10.1107/S2053273324001116


References

Anker, A. S., Christiansen, T. L., Weber, M., Schmiele, M., Brok, E.,
Kjær, E. T. S., Juhás, P., Thomas, R., Mehring, M. & Jensen, K. M. Ø.
(2021). Angew. Chem. Int. Ed. 60, 2–12.

Anker, A. S., Kjær, E. T. S., Dam, E. B., Billinge, S. J. L., Jensen,
K. M. Ø. & Selvan, R. (2020). In Proceedings of the 16th Interna-
tional Workshop on Mining and Learning with Graphs (MLG), 24
August 2020, San Diego, California, USA (virtual). New York:
Association for Computing Machinery. https://www.mlgworkshop.
org/2020/.

Anker, A. S., Kjær, E. T. S., Juelsholt, M., Christiansen, T. L., Skjærvø,
S. L., Jørgensen, M. R. V., Kantor, I., Sørensen, D. R., Billinge,
S. J. L., Selvan, R. & Jensen, K. M. Ø. (2022). NPJ Comput. Mater.
8, 213.

Anker, A. S., Kjær, E. T. S., Juelsholt, M. & Jensen, K. M. Ø. (2024). J.
Appl. Cryst. 57, 34–43.

Artini, C., Pani, M., Lausi, A., Masini, R. & Costa, G. A. (2014).
Inorg. Chem. 53, 10140–10149.

Asami, M., Ichida, H. & Sasaki, Y. (1984). Acta Cryst. C40, 35–37.
Banerjee, S., Liu, C.-H., Jensen, K. M. Ø., Juhás, P., Lee, J. D., Tofa-

nelli, M., Ackerson, C. J., Murray, C. B. & Billinge, S. J. L. (2020).
Acta Cryst. A76, 24–31.

Billinge, S. J. L. & Levin, I. (2007). Science, 316, 561–565.
Busbongthong, S. & Ozeki, T. (2009). Bull. Chem. Soc. Jpn, 82, 1393–

1397.
Castillo-Blas, C., Moreno, J. M., Romero-Muñiz, I. & Platero-Prats,
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