The Crystal Structure of Methyl 1-Thio-α-D-ribopyranoside

BY R. L. GIRLING* AND G. A. JEFFREY

Department of Crystallography, University of Pittsburgh, Pittsburgh, Pa. 15213, U.S.A.

(Received 20 September 1972; accepted 9 November 1973)

The crystal structure of methyl 1-thio-α-D-ribopyranoside, C₆H₁₂O₄S, has been determined by direct methods. The space group is P2₁2₁2₁, with four molecules in a unit cell, a = 8.696(2), b = 12.83(3), c = 7.335(2) Å. The structure was refined to R = 0.028 for 830 independent reflections measured with Ni-filtered Cu Kα radiation. The absolute configuration was confirmed. The molecule has the 1C₄ chair conformation, thereby permitting the formation of a syn-axial intramolecular hydrogen bond with an H...O distance of 2.1 Å and O-H...O angle of 142°. The intermolecular hydrogen-bonding forms buckled ribbons extending in the c direction which link the molecules into columns, separated by van der Waals interactions.

Introduction

Originally isolated as comparatively rare natural products (Horton & Hutson, 1963), the thiosugars have recently become more important as synthetic intermediates (Paulson & Todt, 1968), possible precursors of nucleosides (Whistler, Nayak & Perkins, 1970), and potential enzymatic inhibitors (Claeyssens & De Bruyne, 1965). Methyl 1-thio-α-D-ribopyranoside (I) is a member of a series of mono- and dithiosubstituted ribopyranosides prepared and supplied in the crystalline form by Dr N. A. Hughes of the University of Newcastle upon Tyne, England. The α-D-ribopyranoses are conformationally interesting because both the 1C₄ (II) and 4C₁ (III) chair conformers give rise to syn-axial interactions which are believed to play an important role in determining conformational stability. Theoretical calculations and experimental observations by p.m.r. on α and β-D-ribopyranose indicate that both conformers are present in aqueous solution (Stoddart, 1971). The influence of intramolecular hydrogen bonding on the conformational equilibrium in solution of a related compound, methyl 2-deoxy-α-ribopyranoside, has been discussed recently by Lemieux (1971).

Table 1. Atomic positional and thermal parameters with e.s.d.’s for methyl 1-thio-α-D-ribopyranoside

Positional parameters are expressed as fractions of the lattice translations. Thermal parameters are defined by the expression: $T = \exp \left[-(h^2\beta_{11} + k^2\beta_{22} + l^2\beta_{33} + 2hk\beta_{12} + 2hl\beta_{13} + 2lk\beta_{23})\right]$. Non-hydrogen parameters $\times 10^4$, hydrogen parameters $\times 10^3$.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>β¹¹</th>
<th>β¹²</th>
<th>β¹³</th>
<th>β²²</th>
<th>β²³</th>
<th>β³³</th>
<th>β¹₂</th>
<th>β¹₃</th>
<th>β²₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>S(1)</td>
<td>1398 (1)</td>
<td>1924 (8)</td>
<td>9541 (1)</td>
<td>163 (1)</td>
<td>68 (1)</td>
<td>138 (2)</td>
<td>-7 (1)</td>
<td>24 (2)</td>
<td>11 (1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(1)</td>
<td>2638 (5)</td>
<td>2333 (3)</td>
<td>7716 (5)</td>
<td>120 (7)</td>
<td>55 (3)</td>
<td>108 (7)</td>
<td>3 (3)</td>
<td>4 (6)</td>
<td>6 (4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(2)</td>
<td>2811 (5)</td>
<td>3523 (3)</td>
<td>7747 (5)</td>
<td>114 (6)</td>
<td>53 (2)</td>
<td>107 (7)</td>
<td>-5 (3)</td>
<td>-18 (5)</td>
<td>-7 (3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(3)</td>
<td>3748 (5)</td>
<td>3866 (3)</td>
<td>6094 (5)</td>
<td>114 (5)</td>
<td>50 (2)</td>
<td>132 (6)</td>
<td>-1 (4)</td>
<td>18 (6)</td>
<td>2 (3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(4)</td>
<td>3020 (4)</td>
<td>3447 (3)</td>
<td>4345 (5)</td>
<td>112 (5)</td>
<td>57 (3)</td>
<td>118 (3)</td>
<td>-3 (4)</td>
<td>19 (7)</td>
<td>-19 (4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(5)</td>
<td>2906 (5)</td>
<td>2274 (3)</td>
<td>4509 (6)</td>
<td>156 (7)</td>
<td>381 (17)</td>
<td>5 (5)</td>
<td>91 (13)</td>
<td>68 (7)</td>
<td>2 (3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(6)</td>
<td>1884 (8)</td>
<td>552 (4)</td>
<td>9598 (11)</td>
<td>234 (12)</td>
<td>68 (3)</td>
<td>381 (17)</td>
<td>5 (5)</td>
<td>91 (13)</td>
<td>68 (7)</td>
<td>2 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(1)</td>
<td>1356 (4)</td>
<td>4033 (2)</td>
<td>7831 (4)</td>
<td>118 (4)</td>
<td>59 (2)</td>
<td>116 (5)</td>
<td>15 (3)</td>
<td>15 (4)</td>
<td>-7 (3)</td>
<td>2 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(2)</td>
<td>3921 (5)</td>
<td>4963 (2)</td>
<td>6127 (4)</td>
<td>198 (6)</td>
<td>49 (2)</td>
<td>121 (5)</td>
<td>-15 (3)</td>
<td>8 (5)</td>
<td>3 (3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(3)</td>
<td>1516 (4)</td>
<td>3867 (2)</td>
<td>4151 (4)</td>
<td>143 (5)</td>
<td>71 (2)</td>
<td>112 (6)</td>
<td>12 (2)</td>
<td>-7 (5)</td>
<td>24 (3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(5)</td>
<td>1976 (2)</td>
<td>1948 (2)</td>
<td>6030 (3)</td>
<td>130 (4)</td>
<td>49 (2)</td>
<td>107 (4)</td>
<td>-12 (2)</td>
<td>-2 (3)</td>
<td>-11 (2)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1 (cont.)

Hydrogen atoms positional parameters are \(\times 10^3 \).

<table>
<thead>
<tr>
<th></th>
<th>(x)</th>
<th>(y)</th>
<th>(z)</th>
<th>(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(2)</td>
<td>111 (5)</td>
<td>413 (3)</td>
<td>693 (5)</td>
<td>4-4 (13)</td>
</tr>
<tr>
<td>H(3)</td>
<td>390 (4)</td>
<td>519 (2)</td>
<td>470 (4)</td>
<td>2-7 (10)</td>
</tr>
<tr>
<td>H(4)</td>
<td>138 (4)</td>
<td>412 (2)</td>
<td>346 (4)</td>
<td>1-1 (7)</td>
</tr>
<tr>
<td>H(5)</td>
<td>378 (4)</td>
<td>202 (2)</td>
<td>787 (4)</td>
<td>2-8 (7)</td>
</tr>
<tr>
<td>H(6)</td>
<td>337 (3)</td>
<td>371 (2)</td>
<td>886 (4)</td>
<td>2-4 (7)</td>
</tr>
<tr>
<td>H(7)</td>
<td>480 (3)</td>
<td>350 (2)</td>
<td>632 (4)</td>
<td>2-1 (7)</td>
</tr>
<tr>
<td>H(8)</td>
<td>365 (4)</td>
<td>362 (2)</td>
<td>338 (4)</td>
<td>2-0 (7)</td>
</tr>
<tr>
<td>H(9)</td>
<td>394 (4)</td>
<td>195 (2)</td>
<td>470 (5)</td>
<td>3-9 (8)</td>
</tr>
<tr>
<td>H(10)</td>
<td>244 (3)</td>
<td>204 (3)</td>
<td>348 (4)</td>
<td>2-6 (8)</td>
</tr>
<tr>
<td>H(11)</td>
<td>150 (6)</td>
<td>31 (4)</td>
<td>1057 (8)</td>
<td>7-3 (16)</td>
</tr>
<tr>
<td>H(12)</td>
<td>298 (5)</td>
<td>50 (3)</td>
<td>973 (7)</td>
<td>5-8 (15)</td>
</tr>
<tr>
<td>H(13)</td>
<td>89 (7)</td>
<td>26 (4)</td>
<td>834 (9)</td>
<td>12-6 (22)</td>
</tr>
</tbody>
</table>

Crystal data

Methyl 1-thio-\(\alpha \)-D-ribopyranoside, \(\text{C}_6\text{H}_{12}\text{O}_4\text{S} \), M. W. 180-2, m. p. 155-6°C

Colorless needles, orthorhombic, \(P2_12_12_1 \) from systematic extinctions \(h00 \) absent for \(h \) odd, \(0k0 \) absent for \(k \) odd, \(00l \) absent for \(l \) odd.

\(a=8-696(2), b=12-83(3), c=7-335(2) \AA, Z=4 \).

\(D_m=1-476 \text{ g cm}^{-3} \) (flotation), \(D_x=1-472 \text{ g cm}^{-3} \).

\(\mu_{\text{Cu K}}=34-3 \text{ cm}^{-1} \).

Experimental

The crystal used for data collection was selected from the specimen supplied by Professor Hughes, who had recrystallized it from a mixture of ethanol and ethyl acetate. It was a needle, \(0-09 \times 0-13 \times 0-43 \text{ mm} \), elongated in the \(c \) direction. The data were measured with \(\text{Ni-filtered Cu K} \alpha \) radiation on a Picker FACS I diffractometer at room temperature. Cell dimensions calculated from film data were used as initial values in a best least-squares fit (Shiono, 1970) to the 20 values for 20 reflections obtained by manually adjusting the setting angles until 50% of the total beam intensity was obtained in each of the half windows. The intensities of 830 symmetry-independent reflections were measured using a \(\theta/2\theta \) scan, with variable scan width, 1°/min scan rate, and a 10 sec background count on each side of the reflection. Three reflections were used to monitor crystal alignment and crystal decomposition; the X-ray intensities varied less than 2% and these small variations were used as scale factors in the data processing.

Table 2. Observed and calculated structure factors

Columns are: \(h \) index, 10|\(F_{\text{calc}} \), 10|\(F_{\text{calc}} \). Asterisks indicate unobserved reflections.
There were 143 reflections less than two standard deviations above background and these were considered unobserved. The data were corrected for Lp (Shiono, 1970) and absorption (Craven, 1963; Busing & Levy, 1957), and reduced to structure amplitudes.

Structure determination and refinement

The structure factors were scaled and normalized by the use of a Wilson plot. Additional renormalization of special groups of E's to assist in phase determination was carried out using a program by Shiono (1970). Several sets of three origin-defining and one enantiodermorph-determining reflection were selected and used in a tangent-refinement procedure (Hall, 1967). The resulting E maps, calculated from the 132 highest E values, failed to reveal the structure, but the addition of a fifth phase to the tangent refinement gave an E map with peaks corresponding to all but one non-hydrogen atom. The initial structure-factor agreement, $R = 0.29$, was reduced to 0.05 by the addition of the missing atom and anisotropic refinement, using a block-diagonal least-squares program on an IBM 1130 (Shiono, 1970). At this stage, all the hydrogen atoms were unambiguously located from a difference map. Anomalous dispersion corrections (Cromer & Liberman, 1970) for S and O atoms were added and a full-matrix least-squares refinement of all heavy atoms anisotropically and hydrogen atoms isotropically gave a final R of 0.028 and wR of 0.023, where $w = 1/(\sin \theta/\lambda)$. The weighting approximates in this case to the average $1/aF$ for a given range of $\sin \theta$, thus the strong reflections, which are subject to multiple reflection and extinction effects, are not overweighted. The function minimized was $\sum w[(F_{o}) - K(F_{c})]^2$ where K is a single scale factor. No observed data point was removed or 'weighted' zero during the refinement.

The absolute configuration of the sugar was determined by two methods; a Bijvoet pair comparison, and a refinement of D and L isomers for $+h+k+l$ data (Ibers & Hamilton, 1964). The intensities of the Bijvoet pairs were recorded by hand-centering the reflections and counting for 20 sec at the maximum peak height. The ratio of the observed and calculated intensities below clearly indicates the D isomer.

<table>
<thead>
<tr>
<th>h</th>
<th>k</th>
<th>l</th>
<th>$I(hkl)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>7</td>
<td>1</td>
<td>0.72</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>2</td>
<td>0.66</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>1</td>
<td>0.85</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1.27</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>1</td>
<td>0.73</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>3</td>
<td>0.68</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>4</td>
<td>0.69</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>1</td>
<td>1.31</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1.18</td>
</tr>
</tbody>
</table>

The ratio of the observed and calculated intensities below clearly indicates the D isomer.

Refinement of $+h+k+l$ reflections for the D ($R = 0.028$) and L ($R = 0.035$) isomers rejected the L at greater than 99.5% confidence level using Hamilton’s (1965) R-value significance test. The final atomic positional and thermal parameters are given in Table 1 and the structure factors are given in Table 2. The atomic numbering and thermal ellipsoids are shown in Fig. 1.

Description of the structure

The molecule (I), shown in Fig. 1, has the $1C_4$, or IC, ring conformation (II) with the two axial oxygen atoms O(2), O(4), linked by an intramolecular hydrogen bond, as previously reported by Girling & Jeffrey (1971). Although there may be other factors involved, the preference over the more usual $4C_1$ conformer (III) can therefore be ascribed simply to the greater strength of

Fig. 2. Fused-ring system formed by the intramolecular hydrogen bond; it consists of two six-membered rings in the chair conformation and an eight-membered ring in the ‘tub’ form. Torsion angles and valence angles are in °, distances are in A. The standard deviations are 0.005 A and 0.5°, except for those involving hydrogens, where they are 0.1 A and 5°.

Fig. 3. The intramolecular hydrogen bonding in methyl 1-thio-α-D-ribopyranoside, viewed in the direction of the C(2) → C(1), C(4) → C(5) bonds. The standard deviations are given in Fig. 2.
Fig. 4. Torsional angles and closest intramolecular contacts (Å) of the methyl group viewed down the S(1)-C(1) bond, in methyl 1-thio-α-D-ribopyranoside.

Table 3. Torsional angles for methyl 1-thio-α-D-ribopyranoside

<table>
<thead>
<tr>
<th>Torsional angles</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Ring angles are given in Fig. 3.)</td>
<td></td>
</tr>
<tr>
<td>O(4)-C(4)-C(5)-O(5)</td>
<td>−58.5 (0.5)°</td>
</tr>
<tr>
<td>O(4)-C(4)-C(3)-O(3)</td>
<td>−61.3</td>
</tr>
<tr>
<td>O(4)-C(4)-C(3)-C(2)</td>
<td>+62.0</td>
</tr>
<tr>
<td>O(3)-C(3)-C(4)-C(5)</td>
<td>−179.9</td>
</tr>
<tr>
<td>O(3)-C(3)-C(2)-O(2)</td>
<td>+56.2</td>
</tr>
<tr>
<td>O(3)-C(3)-C(2)-C(1)</td>
<td>−179.5</td>
</tr>
<tr>
<td>O(2)-C(2)-C(3)-C(4)</td>
<td>−69.9</td>
</tr>
<tr>
<td>O(2)-C(2)-C(1)-O(5)</td>
<td>+69.0</td>
</tr>
<tr>
<td>O(2)-C(2)-C(1)-S(1)</td>
<td>−30.5</td>
</tr>
<tr>
<td>S(1)-C(1)-C(2)-C(3)</td>
<td>−174.5</td>
</tr>
<tr>
<td>S(1)-C(1)-O(5)-C(5)</td>
<td>−179.0</td>
</tr>
<tr>
<td>C(6)-S(1)-C(1)-O(5)</td>
<td>+75.2</td>
</tr>
<tr>
<td>C(6)-S(1)-C(1)-C(2)</td>
<td>−163.3</td>
</tr>
</tbody>
</table>
Since the formation of the *syn-axial* intramolecular hydrogen bond is so consistent with unstrained pyranose ring geometry, one might ask why it is not more commonly observed in the crystal structures of pyranose sugars. In solution, these bonds are believed to be formed only where there is a lack of competition from other suitable hydrogen-bonding groups, as in non-hydrolytic solvents (Stoddart, 1971). Similarly, in the solid state, the hydrogen bonding function of the hydroxyl groups is generally fully utilized in intermolecular cohesion and intramolecular hydrogen bonding appears to be secondary. The reason may be that the bond energy for an intramolecular bond is less than for a comparable intermolecular bond because of less favorable H···O distances and O-H···O bond angles which are constrained in pyranose sugars to be about 2.0 Å and 140°, as compared with the commonly observed intermolecular hydrogen bond distances of 1.7–1.8 Å and 170–180°.

The bond distances and bond angles, which differ from 109.5 ± 0.5°, for methyl 1-thio-α-D-ribofuranoside are given in Table 4. They do not differ significantly from those expected from other carbohydrate structure determinations and from the results of Mathieson & Poppleton (1966) for methyl 1-thio-β-D-xylopyranoside. Although S(1)–C(1) is 0.013 Å shorter than S(1)–C(6), this observation is of marginal significance in relation to the anomeric bond shortening effect (Berman, Chu & Jeffrey, 1967). The estimated standard deviation of the S(6) parameters is relatively large because of the greater thermal motion of the aglycone group.

![Fig. 5](image)

The methyl group torsion angle C(6)–S(1)–C(1)–O(5) is 15° greater than the ideal 60° for normal +*synclinal* orientation of an aglycone bond. This additional twist is in the direction such as to increase the H···O(5) non-bonding distance at the expense of the H···H distance, as shown in Fig. 4.

The hydrogen bonding, shown in Fig. 5, is comparatively simple. It consists of infinite chains with a sequence of one intra- and two intermolecular bonds, → O(2)H → O(4)H → O(3)H → O(2)H →, forming a two stranded ribbon which extends in the c direction. This ribbon of hydrogen bonds links successive molecules related by the screw axes parallel to c in a buckled column one molecule wide along a and two molecules in the b direction, as shown in Fig. 6. The nonpolar groups are on the exterior of these columns and their intermolecular contacts correspond to van der Waals forces as shown by the intermolecular non-bonded distances given in Table 5; none are significantly less than the sum of the van der Waals radii. The thermal motion of the non-hydrogen atoms reflects the unidirectional character of the hydrogen bonding by having larger r.m.s. components in the a and b directions than in the c direction.

This research was supported by the U. S. Public Health Service, National Institutes of Health Grant No. GM-11293.
Table 5. Intermolecular approaches in methyl 1-thio-α-D-ribopyranoside less than 3.5 Å for non-hydrogen atoms and less than 3.0 Å involving hydrogen atoms

<table>
<thead>
<tr>
<th>Intermolecular H-bonds</th>
<th>Distance (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(2) ••• O(3)</td>
<td>2.748 (8)</td>
</tr>
<tr>
<td>O(3) ••• O(4)</td>
<td>2.703 (8)</td>
</tr>
<tr>
<td>H(4) ••• O(3)</td>
<td>2.1 (1)</td>
</tr>
<tr>
<td>H(4) ••• O(2)</td>
<td>2.0 (1)</td>
</tr>
<tr>
<td>O(2) ••• H(3)</td>
<td>1.7 (1)</td>
</tr>
<tr>
<td>O(3) ••• H(3)</td>
<td>2.8 (2)</td>
</tr>
<tr>
<td>O(4) ••• H(4)</td>
<td>178°</td>
</tr>
<tr>
<td>O(3) ••• H(4)</td>
<td>174°</td>
</tr>
</tbody>
</table>

Van der Waals distances

<table>
<thead>
<tr>
<th>Distance (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(2) ••• C(4)</td>
</tr>
<tr>
<td>O(2) ••• C(4)</td>
</tr>
<tr>
<td>O(3) ••• C(2)</td>
</tr>
<tr>
<td>O(3) ••• C(3)</td>
</tr>
<tr>
<td>O(3) ••• C(4)</td>
</tr>
<tr>
<td>C(2) ••• H(3)</td>
</tr>
<tr>
<td>C(5) ••• H(7)</td>
</tr>
<tr>
<td>O(2) ••• H(3)</td>
</tr>
<tr>
<td>O(3) ••• H(12)</td>
</tr>
<tr>
<td>O(4) ••• H(9)</td>
</tr>
<tr>
<td>O(5) ••• H(7)</td>
</tr>
</tbody>
</table>

References

Hall, S. R. (1967). Direct Phasing Methods. UWAC-17. The Univ. of Western Australia, revised for IBM 7090 by H. M. Berman.