The Crystal Structure of Magnesium Dimolybdate

BY K. STADNICKA

Institute of Chemistry, Jagiellonian University, ul. Krupnicza 41, 30-060 Kraków, Poland

AND J. HABER AND R. KOZLOWSKI

Research Laboratories of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek, 30-239 Kraków, Poland

(Received 22 November 1976; accepted 25 June 1977)

The structure of magnesium dimolybdate, MgMo$_2$O$_7$, monoclinic with space group $P2_1/c$ and $a = 8.111$ (2), $b = 5.700$ (1), $c = 15.002$ (3) Å, $\beta = 115.26$ (2)°, $Z = 4$, was determined by the heavy-atom method and refined by full-matrix least squares to an R of 0.095 for 2558 counter reflexions. The Mo$_2$O$_7^-$ pyro-anion consists of two corner-sharing MoO$_4$ tetrahedra, which are twisted from the ideal eclipsed configuration by an average of 12.3°. Mo$_2$O$_7$ groups form anionic sheets parallel to the (100) plane. Mg$^{2+}$ ions are situated between the anionic sheets in a distorted-octahedral environment of O atoms. MgO$_6$ octahedra share one edge forming Mg$_2$O$_{10}$ units.

Introduction

The phase equilibrium diagram for the system of MgMoO$_4$-MoO$_3$ has been investigated (Zhukovskii, Tkachenko & Rakova, 1970) and only one compound, of the composition Mg$_2$Mo$_3$O$_{11}$, was found. Our preliminary studies showed that two compounds, of chemical formulae Mg$_2$Mo$_3$O$_{11}$ and MgMo$_2$O$_7$, exist in this system.

Attempts to obtain single crystals of the MgMo$_2$O$_7$ compound proved successful and the crystal structure investigation was undertaken.

Experimental

Single crystals of MgMo$_2$O$_7$ were grown from a melt of 0.15 mol% MgO and 0.85 mol% MoO$_3$*, making use of the sublimation of MoO$_3$ at higher temperatures. Crystallization was performed in an open quartz tube by heating the mixture at 800°C for 48 h. After cooling, a large number of pale-pink crystals of poorly defined morphology were obtained. The Mg/Mo atomic ratio in the crystals, as determined by atomic absorption spectroscopy, was 1:2. Laue photographs showed well-formed reflexions and Weissenberg photographs indicated monoclinic symmetry with space group $P2_1/c$ (systematic absences: 0k0 for k odd, h0l for l odd). Cell parameters were obtained by least-squares refinement from the setting angles of the 15 strong reflexions used in the auto-indexing procedure. The density of the investigated crystals was determined by a pycnometric method in carbon tetrachloride.

Crystal data

MgMo$_2$O$_7$, monoclinic, $M_r = 328.2$, space group $P2_1/c$, $a = 8.111$ (2), $b = 5.700$ (1), $c = 15.002$ (3) Å, $\beta = 115.26$ (2)°, $V = 627.3$ Å3, $Z = 4$, $D_r = 3.475$, $D_m = 3.22$ g cm$^{-3}$, $F(000) = 608$, λ(Mo Kα) = 0.71069 Å, μ(Mo Kα) = 42.58 cm$^{-1}$.

For a crystal ground to the approximate shape of an ellipsoid with dimensions 0.27 × 0.21 × 0.21 mm, intensity data were collected on a CAD-4 single-crystal diffractometer (Enraf-Nonius) using graphite-monochromated Mo Kα radiation.* Measurements were taken in the range of theta from 1 to 35° with the θ-2θ scan mode and a scan width of 0.65° + 0.40° tan θ. The intensities were corrected for background, Lorentz and polarization effects and the absorption correction for an ellipsoid was applied with Buda’s (1977) program. No correction was made for extinction. Scaling of intensities was achieved with a reference reflexion recorded after each group of 47 measurements. The fluctuation in the intensity of the standard reflexion was random and less than 5%. Out of 2628 independent reflexions measured, 21 were found to have intensities less than zero and 49 were not significantly above background (I < 1.5σ(I)). Therefore, 2558 intensities were used in further calculations.

Structure solution and refinement

The coordinates of the two Mo atoms in the asymmetric unit were determined from a three-dimensional

* Both are commercial products.
Table 1. Positional parameters (x 10^4) with estimated standard deviations in parentheses

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mo(1)</td>
<td>7474.1</td>
<td>6259.9</td>
<td>3638.5</td>
</tr>
<tr>
<td>Mo(2)</td>
<td>12073.7</td>
<td>6340.2</td>
<td>3712.9</td>
</tr>
<tr>
<td>Mg</td>
<td>5155.2</td>
<td>1265.2</td>
<td>4103.1</td>
</tr>
<tr>
<td>O(1)</td>
<td>6955.5</td>
<td>3913.6</td>
<td>4220.3</td>
</tr>
<tr>
<td>O(2)</td>
<td>6090.6</td>
<td>6133.6</td>
<td>2392.3</td>
</tr>
<tr>
<td>O(3)</td>
<td>7005.5</td>
<td>8805.5</td>
<td>4103.2</td>
</tr>
<tr>
<td>O(4)</td>
<td>9931.5</td>
<td>6245.4</td>
<td>3906.3</td>
</tr>
<tr>
<td>O(5)</td>
<td>13208.5</td>
<td>3688.5</td>
<td>4021.3</td>
</tr>
<tr>
<td>O(6)</td>
<td>13619.5</td>
<td>8646.5</td>
<td>4335.3</td>
</tr>
<tr>
<td>O(7)</td>
<td>11452.6</td>
<td>6777.9</td>
<td>2486.3</td>
</tr>
</tbody>
</table>

Patterson map. After refinement of the Mo parameters (R = 0.23), a difference map revealed all the missing atoms. The structure was refined by the full-matrix least-squares method on the basis of 2558 observed reflexions. All calculations were performed with the SHELX program system (Sheldrick, 1975) in which the following weighting scheme was used: \(w = k_a(F_0) + |\sigma(F_0)|^{-1} \).

Values of \(k \) and \(g \) were refined to 1 and 0.0857 respectively. The atomic scattering factors of Mg and Mo were taken from International Tables for X-ray Crystallography (1974) and \(\Delta f' \) and \(\Delta f'' \) corrections for anomalous dispersion were from Cromer (1965). The refinement with anisotropic temperature factors for both Mo atoms. The last difference Fourier synthesis revealed several, randomly distributed peaks not larger than 2 e Å⁻³. The final discrepancy indices for all atoms, except those for \(U_{22} \) of Mo(1) and Mo(2) which, however, did not exceed 0.5 of their estimated standard deviations.

Despite the application of a damping factor, better convergence was difficult to obtain because of correlations between the anisotropic temperature factors of both Mo atoms. The last difference Fourier synthesis revealed several, randomly distributed peaks not larger than 2 e Å⁻³. The final discrepancy indices for all reflexions were as follows: \(R = 0.095, R_w = 0.102 \) and \(R_g = 0.156 \) where \(R = \Sigma |F_o| - |F_c|/|\Sigma|F_o| \), \(R_w = \Sigma w^{1/2}|F_o| - |F_c|/|\Sigma w^{1/2}|F_o| \) and \(R_g = \Sigma w((F_o)^2 - (F_c)^2)/\Sigma w|F_o|^2 \). There are about 80 strong reflexions observed (i.e. 3%) with \(|F_o| \) considerably lower than \(|F_c| \). These differences, resulting in the relatively high \(R \) factor, can be attributed to the effect of extinction. The final positional parameters are presented in Table 1.*

Description of the structure

The bond lengths and angles found in the structure of the title compound are given in Table 2. Mg atoms are surrounded by four O atoms, arranged in a slightly distorted tetrahedron. The MoO₄ tetrahedra share corners forming discrete MoO₄²⁻ ions (Fig. 1a) with a Mo(1)–O(4)–Mo(2) angle of 160.7 (3)°. The unshared O atoms are twisted somewhat from the ideal eclipsed configuration of \(mm \) symmetry (Fig. 1b). According to Panagiotopoulos & Brown (1973) the

Table 2. Interatomic distances (Å) and bond angles (°) with estimated standard deviations in parentheses

<table>
<thead>
<tr>
<th></th>
<th>Mo(1)–O(1)</th>
<th>Mo(2)–O(4)</th>
<th>Mo(1)–O(2)</th>
<th>Mo(2)–O(5)</th>
<th>Mo(1)–O(3)</th>
<th>Mo(2)–O(6)</th>
<th>Mo(1)–O(4)</th>
<th>Mo(2)–O(7)</th>
<th>Mo(2)–O(4)–Mo(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) MgO₂⁻</td>
<td>1.744 (3)</td>
<td>1.881 (4)</td>
<td>1.723 (4)</td>
<td>1.727 (3)</td>
<td>1.720 (3)</td>
<td>1.781 (3)</td>
<td>1.857 (4)</td>
<td>1.707 (4)</td>
<td>1.707 (4)</td>
</tr>
<tr>
<td>b) Mg</td>
<td>2.055 (4)</td>
<td>89.6 (2)</td>
<td>2.031 (4)</td>
<td>87.2 (2)</td>
<td>2.054 (4)</td>
<td>96.2 (2)</td>
<td>2.061 (4)</td>
<td>178.2 (2)</td>
<td>160.7 (3)</td>
</tr>
<tr>
<td>c) O(4)–O(3)</td>
<td>2.906 (4)</td>
<td>176.7 (2)</td>
<td>2.067 (3)</td>
<td>176.7 (2)</td>
<td>2.061 (4)</td>
<td>176.7 (2)</td>
<td>2.067 (3)</td>
<td>176.7 (2)</td>
<td>160.7 (3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Mo(1)–O(1)</th>
<th>Mo(2)–O(4)</th>
<th>Mo(1)–O(2)</th>
<th>Mo(2)–O(5)</th>
<th>Mo(1)–O(3)</th>
<th>Mo(2)–O(6)</th>
<th>Mo(1)–O(4)</th>
<th>Mo(2)–O(7)</th>
<th>Mo(2)–O(4)–Mo(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) MgO₂⁻</td>
<td>1.744 (3)</td>
<td>1.881 (4)</td>
<td>1.723 (4)</td>
<td>1.727 (3)</td>
<td>1.720 (3)</td>
<td>1.781 (3)</td>
<td>1.857 (4)</td>
<td>1.707 (4)</td>
<td>1.707 (4)</td>
</tr>
<tr>
<td>b) Mg</td>
<td>2.055 (4)</td>
<td>89.6 (2)</td>
<td>2.031 (4)</td>
<td>87.2 (2)</td>
<td>2.054 (4)</td>
<td>96.2 (2)</td>
<td>2.061 (4)</td>
<td>178.2 (2)</td>
<td>160.7 (3)</td>
</tr>
<tr>
<td>c) O(4)–O(3)</td>
<td>2.906 (4)</td>
<td>176.7 (2)</td>
<td>2.067 (3)</td>
<td>176.7 (2)</td>
<td>2.061 (4)</td>
<td>176.7 (2)</td>
<td>2.067 (3)</td>
<td>176.7 (2)</td>
<td>160.7 (3)</td>
</tr>
</tbody>
</table>

| | 1.744 (3) | 1.881 (4) | 1.723 (4) | 1.727 (3) | 1.720 (3) | 1.781 (3) | 1.857 (4) | 1.707 (4) | 1.707 (4) |

| | 1.744 (3) | 1.881 (4) | 1.723 (4) | 1.727 (3) | 1.720 (3) | 1.781 (3) | 1.857 (4) | 1.707 (4) | 1.707 (4) |

| | 1.744 (3) | 1.881 (4) | 1.723 (4) | 1.727 (3) | 1.720 (3) | 1.781 (3) | 1.857 (4) | 1.707 (4) | 1.707 (4) |

| | 1.744 (3) | 1.881 (4) | 1.723 (4) | 1.727 (3) | 1.720 (3) | 1.781 (3) | 1.857 (4) | 1.707 (4) | 1.707 (4) |

* Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 32845 (18 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.
relative orientation of MoO₄ groups in pyro-anions can be described by two torsion angles, α₁ and α₂. They are defined as the rotation angles of the terminal O atoms about the Mo(1)–Mo(2) axis out of the plane of the bridging O and both Mo atoms. The α₁, α₂ angles are positive when the terminal O is rotated clockwise from this plane as viewed from the bridging O atom. The mean value of α₁ is +5.3°, that of α₂ is +7.0° and the average twist angle of α₁ + α₂ equals 12.3° in the structure of MgMo₂O₇. The bridging Mo(1)–O(4) and Mo(2)–O(4) distances are 1.857 (4) and 1.881 (4) Å respectively. The Mo(2)–O(7) distance of 1.707 (4) Å is the shortest Mo–O bond length in MgMo₂O₇. O(7) forms contacts only with O(4iii), O(2iii) and O(7iii) oxygen atoms. The Mo–O bond lengths involving O(1), O(2) and O(5), which are coordinated to one Mg atom, vary from 1.720 (3) to 1.744 (3) Å, while in the case of O(6), coordinated to two Mg atoms, the Mo(2)–O(6) distance is 1.781 (3) Å. The mean Mo–O bond length of 1.77 (2) Å agrees very well with that of 1.77 Å quoted by Schröder (1975) as the characteristic average Mo–O distance in MoO₄ tetrahedra. The mean interbond O–Mo–O angle in MoO₄ of 109.4 (7)° is in agreement with the ideal value of the tetrahedral angle. The thermal vibration of the bridging O atom is not larger than those of the terminal atoms. The direction defined by the Mo(1) and Mo(2) atoms of the same pyro-anion is almost parallel to a. The packing of the dimolybdate groups in the unit cell is shown in Fig. 2.

MoO₄²⁻ ions form anionic sheets parallel to the (100) plane. The Mg atoms are situated between anionic sheets so that each Mg atom is coordinated by six O atoms arranged in a distorted octahedron. The mean Mg–O distance is 2.06 (1) Å and the average O–Mg–O interbond angle 90 (1)°. MgO₆ octahedra share one edge forming Mg₂O₁₀ units in which the distance Mg–Mg is 3.156 Å.

Discussion

So far, dimolybdate crystal structures of Na⁺ (Seleborg, 1967), K⁺ (Maganill & Klevtsova, 1971), NH₄⁺ (Knöpnel, Hartl, Hunnius & Fuchs, 1974) and Ag⁺ (Gatehouse, 1974; Gatehouse & Leverett, 1976) have been determined. None contain discrete MoO₄²⁻ ions, their structures being composed of octahedral (Ag⁺ salt), or octahedral–tetrahedral (Na⁺, K⁺, NH₄⁺ salts) infinite chains. Nor have isolated W₂O₇⁻ anions been found in the structures of Na⁺ (Okada, Morikawa, Marumo & Iwai, 1975a) and Li⁺ (Okada et al., 1975b) ditungstates. MgMo₂O₇ is, thus, the first dimolybdate which has been found to belong to a large class of compounds containing isolated X₂O₇ groups composed of XO₄ tetrahedra sharing corners. This class of compounds can be divided into three groups differing with respect to the relative conformation of the X₂O₇ group. These idealized conformations are illustrated in Fig. 3 (Panagiotopoulos & Brown, 1973). In part (a) of...
this figure, the unshared O atoms are in the staggered conformation, whereas (b) and (c) represent two possible eclipsed forms. Further classification of the discussed group of compounds is based on the value of the \(\angle X-O-X \) interbond angle which, in theory, can vary from 102 to 180° (Clark, 1972). Usually it falls within the range 110–155°. The Mo_2 O_2^- ion described in the present paper is close to the configuration in Fig. 3(c) with a twist angle of 12° and Mo–O–Mo angle of 161°.

References

Solid-State Phase Transition in Carbon Tetrabromide. II. The Crystal Structure of Phase I

BY M. MORE, J. LEBFEBRE AND R. FOURET

Laboratoire de Physique des Solides, Equipe de Dynamique des Cristaux Moléculaires associée au CNRS (n° 465), *Université de Lille I*, *BP 36, 59650 Villeneuve d'Ascq, France*

(Received 24 May 1977; accepted 25 June 1977)

Phase I of CBr_4 (above 47°C) is cubic, space group *Fm3m*, with \(a = 8.82 \) Å, \(Z = 4 \). The molecules are orientationally disordered and the structure is described by the use of symmetry-adapted functions. The orientational probability is discussed in terms of these functions.

Introduction

The high-temperature phase of CBr_4 (above 47°C) is ‘plastic’ with the molecules orientationally disordered.

As a first approximation, the disorder can be interpreted by assuming that the molecule occupies at random any one of \(N \) distinguishable orientations, the mean symmetry being cubic (Frankel model). If one neglects correlations, thermal entropy, etc., the transition entropy is approximately \(\Delta S_T = R \ln N \).

In CBr_4, \(\Delta S_T = 4.98 \text{ kcal K}^{-1} \text{ mol}^{-1} \) (Marshall, Staveley & Hart, 1956; Hildebrand & Scott, 1950).

Guthrie & McCullough (1961) suppose that the orientational disorder corresponds to the 10 distinguishable orientations of the combined \(T_d \) and \(C_{3v} \) symmetry (\(R \ln 10 = 4.58 \text{ cal K}^{-1} \text{ mol}^{-1} \)).

In a previous paper (More, Baert & Lefebvre, 1977), we reported that one can expect six different molecular orientations corresponding to \(D_{3d} \) local symmetry.

However, a classical refinement of the high-temperature-phase diffraction data, based on a Frankel model with six equilibrium positions, has failed.

In this paper, we report the structure refined by the use of symmetry-adapted functions. This method takes