temperature phase the static long-range ordered displacement wave (corresponding to the satellite reflections) takes the place of the thermal displacements in the high-temperature phase. The present results agree with the findings of inelastic neutron-scattering studies (de Pater & van Dijk, 1978; de Pater, Axe & Currat, 1978). In these measurements a rather strong quasi-elastic diffuse peak was observed at high temperature (423 K) which is centred in reciprocal space at a wave vector of $0.29\mathbf{c}^\ast$. This diffuse scattering is due to short-range correlated displacement fluctuations and an energy analysis yielded a relaxation time for the fluctuations of 2×10^{-11} s, at 423 K.

In the present structure refinement these fluctuations in the normal high-temperature phase are seen as anisotropic smearing-out of the atoms.

In the low-temperature phase satellite reflections appear and the diffuse-scattering intensity decreases. The static displacements are seen as the splitting up of the atoms in the average structure. The splitting amplitude remains nearly constant in view of the decrease of the anisotropic thermal amplitude.

The author wishes to thank J. Strang for obtaining the diagrams; thanks are due to C. van Dijk, F. Tuinstra and P. M. de Wolff for stimulating discussions.

The hospitality of the physics department of ECN (Petten) during the author's stay there is gratefully acknowledged.

This work was supported by the Stichting voor Fundamenteel Onderzoek der Materie (FOM).

References

The Crystal Structure of Ag₄INO₃

BY KENNETH PERSSON

Physical Chemistry 1, Chemical Center, University of Lund, POB 740, S-220 07 Lund 7, Sweden

(Received 26 June 1978; accepted 20 October 1978)

Abstract

Ag₄INO₃ is orthorhombic, space group $P2_12_12_1$ with $a = 7.4354$ (4), $b = 7.7759$ (4), $c = 17.1338$ (12) Å, and $Z = 8$. The structure was solved by direct methods from diffractometer data and was refined aniso-

tropically to an R value of 0.029. The I atoms are coordinated to six Ag atoms forming trigonal prisms which build up chains by sharing edges. The chains are linked together by either corners or edges. The NO₃ groups are located in the cavities of this three-dimensional network.

© 1979 International Union of Crystallography
Introduction

This work is part of a systematic structural investigation of compounds of the general formula AgₙXₐAₙ (n > x) with various X, A, n and x. So far the detailed crystal structure is known for only three compounds meeting these stoichiometric requirements, viz Ag₃(NO₃)₂ (Birnstock & Britton, 1970), Ag₂BrNO₃ (Persson & Holmberg, 1977), and Ag₁₃(WO₄)₂ (Charette & Geller, 1977) which is an ionic Ag⁺ conductor. Brief reports on Ag₂IF.H₂O (Holmberg & Persson, 1975), Ag₂(NO₃)₂ and Ag₂IF₃.2H₂O (Persson, 1977) have been given.

The intensities of three standard reflexions (135, 248, and 251), checked after every 100 measurements, showed a small decrease and the intensities were scaled with the expression Y = 1.0 - (0.56 × 10⁻³) X, where X is the total time in hours that the crystal had been exposed to X-radiation. The values of I and σ(I), where σ(I) is the standard deviation based on counting statistics, were corrected for Lorentz, polarization and absorption effects. The expression p = (cos² 2θM + cos² 2θ)/(1 + cos ² 2θ) with θM = 6.08° was used in the correction for polarization. The crystal shape was described by ten planes.

Experimental

Crystals of Ag₂INO₃ were obtained by saturation of an ~1.5 M aqueous solution of AgNO₃ with AgI at about 363 K. After filtration at this temperature colourless rods crystallized on cooling. The crystals appeared to be specimens of either Ag₂INO₃ or Ag₃(NO₃)₂.

Ag₂INO₃ is stable in dry air at room temperature. The surface of the crystals darkens after exposure to light for a few days. This darkening had no serious effect on the X-ray intensities. No chemical analyses could be carried out since the crystals obtained were a mixture of the two compounds Ag₂INO₃ and Ag₃(NO₃)₂, and the total quantity of crystals was small. For the same reason the density was not determined experimentally.

Table 1 gives details of the crystal data, the collection of intensities, and the refinement. The method employed in data collection has been described (Elding, 1976). Weissenberg photographs revealed Laue class mmm and the systematic absences h₀₀: h = 2n + 1, 0k₀: k = 2n + 1 and 0₀l: l = 2n + 1. A single-crystal diffractometer (CAD-4) was used for data collection. The cell dimensions were improved by least-squares refinement of 47 reflexions (Danielsson, Grenthe & Oskarsson, 1976). The wavelength was 0.70930 Å.

The heavy-atom structure was solved using the MULTAN system of computer programs (Germain, Main & Woolfson, 1971). The O and N atoms were revealed in a subsequent difference synthesis. Full-matrix least-squares refinement, minimizing ∑ w(|Fₒ| - |Fₐ|)², was performed with weights w = 1/[σ²(adj)(A/Fₐ)² + (aFₐ)²]. The value of a was chosen to give constant values of w(|Fₒ| - |Fₐ|)² in different |Fₒ| and sin θ intervals. One scale factor, and positional and anisotropic thermal parameters were refined (Table 1).

Scattering factors were taken from International Tables for X-ray Crystallography (1974). The final refinement also included correction for extinction (Zachariasen, 1967) and anomalous dispersion by Ag and I. Only nine reflexions had extinction corrections > 10% in |Fₒ|.

In the last cycle the shifts in the parameters were less than 0.5% of the estimated standard deviations and the refinement was considered complete. A final difference synthesis showed peaks of height 1.35 eÅ⁻³ or less around the heavy atoms but it was otherwise featureless.

Table 1. Crystal data, the collection and reduction of intensities and the least-squares refinement

<table>
<thead>
<tr>
<th>Crystal data</th>
<th>Ag₂INO₃</th>
<th>FW 404.65</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crystal system</td>
<td>Orthorhombic</td>
<td></td>
</tr>
<tr>
<td>Space group</td>
<td>P2₁2₁2₁</td>
<td></td>
</tr>
<tr>
<td>a (Å)</td>
<td>7.4354 (4)</td>
<td></td>
</tr>
<tr>
<td>b (Å)</td>
<td>7.7759 (4)</td>
<td></td>
</tr>
<tr>
<td>c (Å)</td>
<td>17.1338 (12)</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>D₄ (Mg m⁻³)</td>
<td>5.43</td>
<td></td>
</tr>
<tr>
<td>Crystal size (mm)</td>
<td>0.181 x 0.056 x 0.097</td>
<td></td>
</tr>
<tr>
<td>Radiation (graphite-monocromated)</td>
<td>Mo Kα, λ = 0.71073 Å</td>
<td></td>
</tr>
<tr>
<td>Take off angle (°)</td>
<td>3°</td>
<td></td>
</tr>
<tr>
<td>Δθ (°)</td>
<td>3°-30</td>
<td></td>
</tr>
<tr>
<td>Minimum number of counts in a scan</td>
<td>3000</td>
<td></td>
</tr>
<tr>
<td>Maximum recording time (s)</td>
<td>180</td>
<td></td>
</tr>
</tbody>
</table>

μ(Mo Kα) (mm⁻¹)	13.01
Range of transmission factor	0.364-0.565
Number of measured reflexions	1673
Number of reflexions given zero	193
weight (I < 0)	1480
Number of independent reflexions used in the final refinement, m	128
Number of parameters refined, n	128
extinction	0.38 (2)
Mosaic spread (° of arc)	15-4
Domain size (mm)	0.27 x 10⁻³

Fig. 1 shows a normal probability plot of δR₁₀ = |Fₒ(i) - Fₐ(i)|/σ(Fₒ(i)) versus the values expected for a normal distribution (Abrahams & Keve, 1971).
Table 2. Positional parameters with estimated standard deviations

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag(1)</td>
<td>0.67435 (11)</td>
<td>0.03154 (11)</td>
<td>0.44214 (4)</td>
</tr>
<tr>
<td>Ag(2)</td>
<td>0.24780 (11)</td>
<td>0.02963 (11)</td>
<td>0.44081 (4)</td>
</tr>
<tr>
<td>Ag(3)</td>
<td>0.71726 (11)</td>
<td>0.53074 (12)</td>
<td>0.31602 (5)</td>
</tr>
<tr>
<td>Ag(4)</td>
<td>0.32554 (11)</td>
<td>0.48515 (12)</td>
<td>0.30493 (4)</td>
</tr>
<tr>
<td>I(1)</td>
<td>0.47074 (8)</td>
<td>0.84270 (8)</td>
<td>0.32144 (3)</td>
</tr>
<tr>
<td>I(2)</td>
<td>0.45908 (8)</td>
<td>0.35323 (7)</td>
<td>0.44995 (3)</td>
</tr>
<tr>
<td>O(11)</td>
<td>0.46911 (96)</td>
<td>0.44874 (83)</td>
<td>0.76430 (31)</td>
</tr>
<tr>
<td>O(12)</td>
<td>0.62920 (94)</td>
<td>0.30936 (88)</td>
<td>0.68016 (42)</td>
</tr>
<tr>
<td>O(13)</td>
<td>0.33518 (98)</td>
<td>0.30268 (85)</td>
<td>0.67359 (36)</td>
</tr>
<tr>
<td>O(21)</td>
<td>0.45349 (99)</td>
<td>0.67090 (81)</td>
<td>0.1412 (34)</td>
</tr>
<tr>
<td>O(22)</td>
<td>0.63834 (100)</td>
<td>0.76749 (96)</td>
<td>0.52591 (38)</td>
</tr>
<tr>
<td>O(23)</td>
<td>0.41976 (103)</td>
<td>0.93288 (82)</td>
<td>0.56900 (34)</td>
</tr>
<tr>
<td>N(1)</td>
<td>0.47594 (94)</td>
<td>0.35369 (95)</td>
<td>0.70566 (36)</td>
</tr>
<tr>
<td>N(2)</td>
<td>0.50243 (96)</td>
<td>0.79035 (93)</td>
<td>0.57119 (37)</td>
</tr>
</tbody>
</table>

The plot is close to linear with a slope of 1.16 and an intercept of 0.08. The positive intercept indicates a systematic overestimation of \(|F_o| - |F_c|\). This is because the method used in the measurements gives too small values for the background. The slope indicates that the values of \(\sigma(F_o)\) are slightly underestimated. All computations were made on the Univac 1108 computer in Lund. Final positional parameters are given in Table 2.*

Description of the structure

Selected interatomic distances and angles are given in Table 3. Fig. 2 gives a stereoscopic view of the contents of the unit cell. The structure consists of linked double...
chains, along \(b \), containing trigonal-prismatic \(\text{Ag}_6\text{I} \) units. The prisms share Ag–Ag edges to form the double chains and these chains, two per unit cell, are linked by alternately shared Ag–Ag edges and Ag corners. The chains are of a zigzag type. The \(\text{NO}_3 \) groups reside in the cavities, formed by six Ag atoms, between the chains.

\(\text{AgINO}_3 \) is a new structure type but can be related to the structure of tungsten carbide, WC, through a twinning operation and a translation of \(\frac{1}{8} a \). In the WC structure type, every second W trigonal prism is filled with C atoms. In the \(\text{Ag}_4\text{INO}_3 \) structure only every fourth of the Ag trigonal prisms is occupied. The twin plane is parallel with the \(ab \) plane through the trigonal prisms which lie on different levels and share edges (Fig. 3). The twin blocks are two filled trigonal prisms wide and the structure can be written symbolically as 4, 4, 4, 4 (Andersson & Hyde, 1974).

Fig. 4(a) and (b) shows the \(\text{Ag}_6\text{I} \) units of I(1) and I(2). The Ag–I(1) and Ag–I(2) distances range from 2.95–3.10 Å and 2.86–2.99 Å respectively, except for one, Ag(3)–I(2), which is 3.30 Å. The distances are longer than those found in \(\beta\text{-AgI} \) (2.814 Å; Burley, 1963) but of the same magnitude as those observed in \(\text{Ag}_2\text{I(NO}_3)_2 \) (2.84–3.08 Å; Birnstok & Britton, 1970). In compounds \(M_x\text{Ag}_n\text{I}_x \) with \(x > n \) (Holmberg, 1976, references 26–39) the Ag–I distances fall in the approximate range 2.80–3.10 Å irrespective of the nature of the counterion \(M \); therefore no significant difference in the Ag–I bonding strength can be inferred from such a comparison between bond lengths in the two general types of compounds.

The Ag surroundings are not easily described with a common polyhedron. Figs. 5–8 show the surroundings of the four different Ag atoms. Ag(1) has eight nearest neighbours: four O atoms, three I atoms, and one Ag atom. The O atoms and one of the I atoms make an irregular pentagon which approximately defines a plane. The five atomic positions deviate from the best-fitting least-squares plane by at most 0.07 Å and Ag(1) is located only 0.002 Å outside the plane. The other

Fig. 3. A projection of the structure along \(a \). Large circles are I and small Ag. The marked coordinates are idealized (see Table 2).

Fig. 4. Stereoscopic drawings showing the trigonal prisms around (a) I(1) and (b) I(2).

Fig. 5. The environment of Ag(1).

Fig. 6. The environment of Ag(2).
two I atoms are situated at each side of this pentagon; the plane defined by I(1), I(2), and Ag(1) is close to perpendicular (89.7°) to the pentagon plane (cf. the Ag environment in Ag₂BrNO₃). The distances are given in the figures. All Ag–O distances in Ag₂INO₃ range from 2.36 to 3.04 Å (Table 3), and they are in good agreement with Ag–O distances found in Ag₂I(NO₃)₂.

Ag(2) also has eight neighbouring atoms approximately in the same configuration as for Ag(1). The pentagon is somewhat less ideal than in the Ag(1) case. The deviations from the least-squares plane are at most 0.21 Å, Ag(2) being 0.056 Å outside the plane. The I(1), I(2), and Ag(2) plane makes an angle of 84.9° to the idealized plane of the five-membered ring. The position of the eighth atom, Ag(1) [and Ag(2) in the Ag(1) environment], is clear from Figs. 5 and 6. The polyhedra of Ag(1) and Ag(2) share an O(23)–I(2) edge and an I(1) corner.

The geometrical figure around Ag(3) can be described as a distorted monocapped trigonal anti-prism (Fig. 7). An Ag(4) atom outside the I triangle makes the antiprism monocapped.

The Ag(4) environment is given in Fig. 8, showing the seven nearest neighbours. The polyhedra of Ag(3) and Ag(4) share a face via the triangle of I atoms.

The NO₃ groups are located in the cavities between the chains of Ag₆I trigonal prisms. These cation boxes (cf. Ag₂BrNO₃) are formed by six Ag atoms and they also have the shape of a trigonal prism. The NO₃ group is oriented in this box with the O atoms directed towards the Ag–Ag edges. The NO₃ ions have close to perfect D₃h symmetry (Table 3).

Finally it should be observed that the Ag–X coordination in Ag₂XNO₃ is quite different for X = Br and X = I. In the analogous bromide compound, Br is surrounded by five Ag atoms in a trigonal bipyramid. However, the structural similarities between Ag₂INO₃ and Ag₂I(NO₃)₂ are quite striking, both compounds being built up by chains of trigonal Ag₆I prisms.

Professor Ido Leden, and Drs Sten Andersson, Bertil Holmberg and Åke Oskarsson have supported this work with discussions and helpful advice which is greatly appreciated. This work is part of a project supported by the Swedish Natural Science Research Council.

References